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ABSTRACT OF DISSERTATION

Leveraging Overhead Imagery for Localization, Mapping, and Understanding

Ground-level and overhead images provide complementary viewpoints of the world. This
thesis proposes methods which leverage dense overhead imagery, in addition to sparsely
distributed ground-level imagery, to advance traditional computer vision problems, such
as ground-level image localization and fine-grained urban mapping. Our work focuses on
three primary research areas: learning a joint feature representation between ground-level
and overhead imagery to enable direct comparison for the task of image geolocalization,
incorporating unlabeled overhead images by inferring labels from nearby ground-level im-
ages to improve image-driven mapping, and fusing ground-level imagery with overhead
imagery to enhance understanding. The ultimate contribution of this thesis is a general
framework for estimating geospatial functions, such as land cover or land use, which inte-
grates visual evidence from both ground-level and overhead image viewpoints.

KEYWORDS: computer vision, machine learning, remote sensing, geospatial analysis

Author’s signature: Scott Workman

Date: May 10, 2018



www.manaraa.com

Leveraging Overhead Imagery for Localization, Mapping, and Understanding

By
Scott Workman

Director of Dissertation: Nathan Jacobs

Director of Graduate Studies: Miroslaw Truszczynski

Date: May 10, 2018



www.manaraa.com

ACKNOWLEDGMENTS

I am immensely grateful to my advisor, Nathan Jacobs, who not only introduced me to
research, but supported me when I was considering pursuing a doctoral degree. Over the
years I have benefited from his guidance, support, patience, and knowledge; there is no
question he has had a profound impact on my life, and my career. I honestly feel lucky to
have had the opportunity to work alongside him and I am proud of what we have accom-
plished together.

I would like to take this opportunity to thank several individuals who helped set me on
this path: Judy Goldsmith, who was the first person to encourage me to pursue a graduate
education, Jerzy Jaromczyk, for helping set the ball rolling, and Jim Griffioen, for his
insight and advice. In addition, I’d like to thank Grzegorz Wasilkowski for his kindness
and mentorship, and Victor Marek for the wonderful discussions. A big thanks to the
members of my advisory committee, Ruigang Yang, Judy Goldsmith, and Liang Liang, for
their invaluable feedback throughout.

I have had the privilege of working and collaborating with many individuals, including:
Mohammad Islam, Paul Mihail, Ryan Baltenberger, Connor Greenwell, Tawfiq Salem,
Zach Bessinger, Weilian Song, Hui Wu, David Crandall, David Smith, Jim Knochelmann,
Armin Hadzic, and others. A sincere thanks to you all. In particular, I would like to thank
Richard Souvenir, for his longstanding help and support, and my friend and colleague,
Menghua Zhai, with whom I worked closest and achieved a great deal.

I have been fortunate to make many lifelong friends during my time at the University
of Kentucky. In lieu of trying to list everyone, please accept this thanks from the bottom of
my heart. You have all helped to make this one of the best and most treasured periods of
my life.

* * *

Last and most importantly I would like to recognize my parents, Joan and Bob. I feel it
is nearly impossible to convey in words just how awesome and special these two individuals
are. Everything I am is because of them. Thank you.

iii



www.manaraa.com

Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Images for Geospatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Are Deep Image Representations Geo-Informative? . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Deep Features for Geospatial Image Analysis . . . . . . . . . . . . . . . . 11
2.3 Distinguishing Regions in Ground-Level Imagery . . . . . . . . . . . . . . 14
2.4 Overhead Imagery Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Cross-View Image Matching . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3 Wide-Area Image Geolocalization with Overhead Reference Imagery 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Cross-View Training for Overhead Image Feature Extraction . . . . . . . . 30
3.4 Application to Cross-View Localization . . . . . . . . . . . . . . . . . . . 34
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4 Understanding and Mapping Natural Beauty . . . . . . . . . . . . . 42

iv



www.manaraa.com

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Exploring Image Scenicness . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Predicting Image Scenicness . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Mapping Image Scenicness . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 5 A Unified Model for Near and Remote Sensing . . . . . . . . . . . . 60
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



www.manaraa.com

LIST OF FIGURES

1.1 (left) A personal photo, taken from the Nyhavn Bridge in Copenhagen, Den-
mark, overlooking the canal. (right) The corresponding overhead view, cen-
tered at the ground-level image capture location. . . . . . . . . . . . . . . . . . 2

2.1 Overview of the introduced San Francisco dataset. (a) A coverage map where
red indicates the spatial coverage of overhead imagery, overlaid with Street
View (green) and Flickr (blue) image locations. (b) Example Street View
panoramas (top) and their corresponding cutouts (bottom). (c) Example Flickr
images after filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Montages of ground-level images with high, or low, SVM scores for a model
trained on Places fc8 features (see Section 2.3 for details). (a, b) Images with
the highest and lowest SVM scores. (c, d) Images from the respective regions
with the most incorrect SVM scores. . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The most ambiguous images based on the SVM score for a region classifier
trained on Places fc8 features, as described in Section 2.3. . . . . . . . . . . . . 16

2.4 Region classification accuracy versus training set size. . . . . . . . . . . . . . . 17
2.5 (left) Averages of the top 100 images that activate a subset of pool2, pool5, and

fc7 layers of ground-level images on the Places model. Each montage is sorted
by the first PCA coefficient of the corresponding image. (right) The result of
the same procedure applied to overhead images. Note that unlike ground-level
imagery, the average images of the overhead imagery are more uniform due to
the nature of the viewpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Synthetic overhead images (right), constructed by performing PCA analysis
on Places fc8 features from small overhead images, highlights different types
of land cover (left). For example, regions that are over water (pink), forest
(yellow), and urban (green) areas are all clearly visible as unique colors. . . . . 19

2.7 Visualizing land cover in overhead imagery using t-SNE [120], a non-linear un-
supervised dimensionality reduction technique, to embed Places fc8 features.
The embedding produces well defined clusters in relation to the ground-truth
land cover classes and shows separation in the high-dimensional feature space. . 20

vi



www.manaraa.com

2.8 Analyzing the semantic co-occurrence of features extracted from co-located
ground-level and overhead imagery in the San Francisco dataset. See Sec-
tion 2.4.3 for algorithm details. Due to space constraints only every third label
is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Leveraging overhead imagery to improve geospatial modeling (see Sec-
tion 2.4.4 for details). The results shown correspond to three scene categories
(urban=“parking lot”, rural=“field/wild”, and water=“ocean”) for the San
Francisco dataset. The images above represent false-color distributions
(red=urban, green=rural and blue=water) represented by: (left) a scatter plot of
ground-level images, (middle) Nadaraya-Watson kernel regression with three
different bandwidths on the sparse samples, and (right) using dense overhead
imagery instead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Overhead image-based search for characterizing unimaged ground-level loca-
tions. Given a query overhead image (top, left), we find the most similar over-
head images (top, right) in the map database, and infer hypothetical ground-
level images (bottom, right). The results are realistic when compared to the
true ground-level image (bottom, left). . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Accuracy of localization as a function of retrieved candidate locations. Our
method, using Places fc8 features, significantly outperforms Lin et al. [66], the
previous best method on the Charleston dataset. . . . . . . . . . . . . . . . . . 25

2.12 False-color images that represent the likelihood that an image is at a particular
location. In each, red represents high likelihood, blue represents low, and the
‘x’ marks the true location. See Section 2.5 for an algorithm description. . . . . 26

3.1 We learn a joint semantic feature representation for overhead and ground-level
imagery and apply this representation to the problem of cross-view image ge-
olocalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Existing CNNs trained on ground-level imagery provide high-level semantic
representations which can be location dependent. Each point represents a geo-
tagged image extracted from a Google Street View panorama, colored accord-
ing to the predicted scene category from the Places [146] network. . . . . . . . 31

3.3 The distribution of ground-level images in the CVUSA dataset. . . . . . . . . . 33
3.4 Example matched ground-level and overhead images from the CVUSA dataset. 33
3.5 Comparison of several off-the-shelf CNN features in terms of localization ac-

curacy on the Charleston dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



www.manaraa.com

3.6 Accuracy of localization as a function of retrieved candidate locations on two
benchmark datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Images that result in high activations for particular scene categories. (top) The
high-activation ground-level images are exemplars for the corresponding se-
mantic class. (middle) The high-activation overhead images for the network
trained on ground-level images are, not surprisingly, less semantically correct.
For example, in the “arch” category the image may look like an arch, but is not
a location you are likely to see an arch from the ground. (bottom) After fine-
tuning for the overhead domain, the high-activation images are a better match
to the respective categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 (left) A false-color image generated by applying the Places network to
overhead imagery. In both images the colors are semantically meaningful
(red=urban, green=rural, blue=water-related). (right) The same as (left) but
with our CVPlaces network (trained on the entire USA dataset, with no
Charleston-specific fine tuning). . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Localization examples at a continental scale. (left) A ground-level query im-
age. (right) A heatmap of the distance between the Places fc8 feature of the
query image and the corresponding CVPlaces feature of an overhead image at
that location (red: more likely location, blue: less likely location). The black
circle marks the true location of the camera. . . . . . . . . . . . . . . . . . . . 40

3.10 Examples of localization at finer spatial scales. (top) The ground-level query
image. (middle) An overhead image centered at the ground location. (bottom)
An overlay showing the distance between the ground-level image feature and
the overhead image features at each location, computed using a sliding window
approach (red: more likely, blue: less likely). . . . . . . . . . . . . . . . . . . 41

4.1 Most observers agree that images of mountains are more scenic than power
lines. Our work seeks to automatically quantify “scenicness” and demonstrate
applications in image understanding and mapping. . . . . . . . . . . . . . . . . 43

4.2 Example images (and human-provided scenicness ratings) from the Sceni-
cOrNot (SoN) dataset: (a) “scenic” images (average rating above 7.0) and (b)
“non-scenic” images (average rating below 3.0). . . . . . . . . . . . . . . . . . 44

4.3 The word cloud depicts the relative frequency of title and caption terms found
in scenic images from the SoN dataset. . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Distribution of color with respect to the average scenicness rating of the SoN
image set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



www.manaraa.com

4.5 Distribution of the frequency of SUN attributes [84] in “scenic” versus “not
scenic” images. Warm colors indicate higher frequency. . . . . . . . . . . . . . 47

4.6 Distribution of high-level categories for the images in the SoN dataset. . . . . . 48
4.7 Example images alongside the distribution of human ratings (green), and the

outputs of AVERAGE (blue), DISTRIBUTION (black), and MULTINOMIAL (ma-
genta). The red × corresponds to the mean rating and the magenta ◦ the
weighted average of the MULTINOMIAL prediction. . . . . . . . . . . . . . . 51

4.8 Network receptive field analysis. Given an input image (top), the output mask
(bottom) highlights the region(s) that most significantly impact the maximal
label assigned by our network. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 For each image, the green bounding box shows the image crop that maximizes
scenicness. The predicted scenicness scores for both the entire image and the
cropped region are shown in the inset. . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Examples of the co-located ground-level (top) and overhead (bottom) image
pairs contained in the Cross-View ScenicOrNot (CVSoN) dataset. . . . . . . . 55

4.11 The architecture for our hybrid approach to cross-view mapping. . . . . . . . . 56
4.12 Scenicness maps. The first column shows an overhead image where dots corre-

spond to geotagged ground-level imagery, colored by average scenicness rating
(warmer colors correspond to more scenic images). The remaining columns
show false-color images that reflect the average scenicness predicted by each
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 We use overhead imagery and geotagged ground-level imagery as input to an
end-to-end deep network that estimates the values of a geospatial function by
performing fine-grained pixel-level labeling on the overhead image. . . . . . . 61

5.2 What type of building is shown in the overhead view (left)? Identifying and
mapping building function is a challenging task that becomes considerably eas-
ier when taking into context nearby ground-level imagery (right). . . . . . . . . 62

5.3 An overview of our network architecture. . . . . . . . . . . . . . . . . . . . . 64
5.4 Sample overhead imagery and nearby street-level panoramas included in the

Brooklyn and Queens dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Sample results for classifying land use: (top–bottom) ground truth, proximate,

remote, and unified (adaptive). . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



www.manaraa.com

5.6 Sample results for identifying building function. From top to bottom, we visu-
alize top-k images for the proximate, remote, and unified (adaptive) methods,
respectively. Each pixel is color coded on a scale from green to red by the rank
of the correct class in the posterior distribution, where bright green is the best
(rank one). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Sample results for estimating building age: (top) ground truth and (bottom)
unified (adaptive). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



www.manaraa.com

LIST OF TABLES

2.1 Region classification accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Quantitative results comparing models with different loss functions. For each
metric, higher is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Comparison of mapping strategies. . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Brooklyn evaluation results (top-1 accuracy). . . . . . . . . . . . . . . . . . . 71
5.2 Brooklyn evaluation results (mIOU). . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Queens evaluation results (top-1 accuracy). . . . . . . . . . . . . . . . . . . . 71
5.4 Queens evaluation results (mIOU). . . . . . . . . . . . . . . . . . . . . . . . . 71

xi



www.manaraa.com

Chapter 1

Introduction

“Of all of our inventions for mass communication, pictures still speak the most

universally understood language.”

– Walt Disney

Images of the natural world reveal a wide variety of subtle cues that allow humans to
rapidly understand the semantic and geometric context of a scene. Studies regarding scene
perception [82] have shown that humans can perceive at a glance an immense amount of
visual information about a scene, from low-level details such as color and contours, to mid-
level details about shape and texture, all the way to high-level details about semantics. For
instance, it only takes a passing glance for a human to notice that the image in Figure 1.1
was captured during clear conditions, that the camera was positioned above the water,
perhaps on a bridge, or that the geographic location is near a harbor due to the ships along
the canal. These types of observations are critical to interpreting what is happening in an
image.

The ultimate goal of computer vision is to teach a computer how to produce such ob-
servations; in other words, to develop methods and learn representations that allow for
automatically understanding the contents of images and video. At first glance, this might
not seem like a very complex problem, or at least it didn’t to Marvin Minsky, who in
1966 asked a first-year undergraduate student “to spend the summer linking a camera to a
computer and getting the computer to describe what it saw” [10]. While the student was
unsuccessful, this overly ambitious summer project spawned decades of research that is
making dramatic impacts in a wide variety of fields.

There are countless examples today highlighting the importance of research in this area.
Of the most compelling are the autonomous robots and vehicles such as NASA’s Mars Ex-
ploration Rover, which make use of a bevy of cameras critical for tasks such as terrain

1
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Figure 1.1: (left) A personal photo, taken from the Nyhavn Bridge in Copenhagen, Den-
mark, overlooking the canal. (right) The corresponding overhead view, centered at the
ground-level image capture location.

analysis and navigation [72]. Other successful applications include face detection soft-
ware on mobile phones, automatic detection of tumors in medical imaging, and assistive
technologies for individuals with vision impairments, to name only a few.

The aforementioned applications, and many more, are motivated by the capability im-
ages offer as a vast untapped resource of information about the world and the way it changes
over time. The concept of teaching computers to see has endless real world functionality. In
the realm of environmental monitoring, land-based cameras have been deployed to estimate
atmospheric visibility [135], analyze beach usage [32], study nearshore oceanography [35],
track leaf growth [77,93], and estimate snow cover [96]. These are real world applications
which use images to produce scientific measurements.

In this thesis, we explore how overhead imagery can be leveraged, in addition to
sparsely distributed ground-level images, to improve solutions to problems in localization,
mapping, and understanding. Though ground-level and overhead images provide comple-
mentary viewpoints of the world, ground-level imagery is not available at every location.
Our work is motivated by the observation that you can often understand what would be
present at a location from a ground-level viewpoint by looking at the corresponding over-
head image.

1.1 Images for Geospatial Analysis

Traditionally research in computer vision has focused primarily on developing methods
for ground-level image understanding, with great success. For ground-level imagery, there

2
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now exist high-quality methods for face recognition and verification [113], object [92] and
pedestrian detection [8], scene understanding [84], camera calibration [145], 3D recon-
struction [107], image colorization [143] and synthesis [28], and much more. In general,
these methods focus on extracting information from an individual ground-level image or a
collection of ground-level images.

Recently, a large body of work has explored the use of geotagged social media, in par-
ticular ground-level imagery, to estimate geographic properties of the world, for example
measuring snow fall and vegetation density [142]. These methods use volunteered geo-
graphic information obtained from sources such as blogs, social networks, and community
contributed photo collections as a source of geospatial information to estimate some un-
observable geospatial function. Each social media artifact (e.g., ground-level image) is an
observation of this function at a particular geographic location.

This is a research direction often referred to as proximate sensing or image-driven map-
ping. Here, publicly available data from social media serves as a replacement for the expen-
sive data collection process (e.g., field data collection, distributed sensor networks) typical
in other fields that seek to create geospatial models, such as landscape phenology [64]. For
example, Leung and Newsam [60] show that large collections of georeferenced images can
be used to automatically estimate land cover. Similarly, Crandall et al. [15] analyze 35
million ground-level images and introduce methods for automatically identifying and clas-
sifying representative images using visual, textual, and temporal features. These works,
and others, are motivated by the recent surge of publicly available geotagged imagery as a
new source of data for solving existing problems.

Unfortunately, using ground-level images as the only source of information has its
drawbacks. The most prominent challenge is that ground-level images aren’t available
at every location. As Crandall et al. [15] show, most images are captured in urban areas
and around famous landmarks. Despite the existence of huge datasets of geotagged im-
ages [115], and billions more geotagged images publicly available online, there are still
large geographic regions with little to no coverage. This is demonstrated empirically by
Weyand et al. [126] who use 490 million geotagged images to partition the Earth’s surface
into a set of non-overlapping cells. Due to the non-uniform geographic distribution of pho-
tos, large regions such as central Africa and Northern Asia are either completely omitted,
or collapsed into a single cell.

While the sparse and non-uniform distribution of ground-level images is the biggest
difficulty, individual samples are often noisy due to incorrect metadata (e.g., incorrect geo-
tags) or suffer from other issues such as manually manipulated visual content. Furthermore,
despite massive improvements to existing recognition algorithms, they are still imperfect.
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Therefore, in order to build geospatial models from both sparse and noisy observations, it is
common for some form of simple local averaging to be applied. This process in turn results
in coarse, low-resolution outputs. The primary challenge in this area is to produce accurate
estimates over a large region, while maintaining a fine-grained high-resolution output.

In remote sensing, it is common to estimate physical properties of the Earth using satel-
lite imagery. Satellite imagery has been used to monitor dust and ash from volcanoes as
well as for preparing and responding to other natural hazards such as floods and land-
slides [118]. There are numerous examples demonstrating how remote sensed imagery is
used to monitor the Earth, including: for global land cover classification [117], to aid pre-
cision agriculture [78], to analyze urban infrastructure [46], and for large scale monitoring
of vegetation dynamics [144].

The potential of overhead imagery has been recognized for over one hundred years.
In military scenarios, overhead imagery is thought to have been captured and used for re-
connaissance as early as 1859 during the Battle of Solferino, when the French Army took
images of the Austrian troops using balloons, as well as during the American Civil War
(1861-1865) [86]. Stichelbaut et al. [109] present an extensive and informative discussion
of the development of overhead photography and its early dependence on military recon-
naissance and the birth of aviation, especially during the First World War. Naturally, the
rise of overhead imagery presented unique research challenges.

More recently, efforts have been made to automate overhead image analysis. As early
as 1970 [37] methods were introduced for classifying terrain types from a single overhead
image, with the goal of automatically generating terrain maps. Similarly, in 1976 Bajcsy et
al. [5] described a system for recognizing roads, intersections, and other road-like objects
in overhead imagery. However, as overhead imaging differs drastically from ground-level
imaging, the majority of techniques that have been developed have occurred independently
and in task-specific ways [95].

When available, overhead imagery offers dense coverage compared to other sparsely
available measurements, such as ground-level images. However, high-resolution overhead
imagery has traditionally only been available through commercial vendors. As such, Wul-
der and Coops [134] recently argued that satellite imagery should be made freely available
for its potential to improve science and environmental monitoring. Ignoring cost of access,
only recently has overhead imagery become more widely available at higher spatial and
temporal resolutions. This is largely due to a surge in the number of microsatellites [22],
miniaturized satellites that fly in low-orbit and are more cost-effective to launch, and the
so-called commercialization of space.

Overhead imagery presents a complementary viewpoint to ground-level imagery which
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can aid understanding. Now, for most locations, overhead imagery is freely available. If
the location of a ground-level image is known, an overhead image can be used to provide
additional context. For instance, it becomes immediately obvious that the ground-level
image shown in Figure 1.1 (left) was captured from a bridge over the canal when examining
the co-located overhead image in Figure 1.1 (right). Despite this, overhead images have
largely been ignored in the computer vision community; very little work has explored
how overhead imagery can aid existing computer vision algorithms that target ground-level
image understanding.

1.2 Our Approach

Our thesis focuses on the joint understanding of ground-level and overhead image view-
points to improve geospatial modeling. The main research question we will address is,
“How can geotagged ground-level imagery and overhead imagery be exploited in unison
to address problems in localization, mapping and understanding?” Our proposed meth-
ods take advantage of the fact that high-resolution overhead imagery now exists across the
globe and is updated regularly. Below, we highlight three main areas of our work.

• Learning a Joint Feature Representation: We investigate learning a joint feature
representation between ground-level and overhead images, such that images from
differing viewpoints can be directly compared. Our insight is that, while the rela-
tionship between ground-level and overhead image viewpoints is complex, overhead
imagery is densely available and a joint feature representation would enable several
potential methods for extending existing approaches in ground-level image under-
standing (e.g., image geolocalization).

• Inferring Labels for Overhead Imagery: We explore how overhead imagery can
be used to directly drive predictions when ground-level imagery is not available. Our
motivation is that there is a plethora of unlabeled overhead imagery which could be
used to augment existing techniques. To do this, our main insight is that we can
leverage nearby ground-level images, and existing image recognition algorithms, to
infer labels for overhead imagery. As a result, unlabeled overhead imagery can be
used to train models by inferring the target label from a nearby ground-level image,
enabling direct predictions from overhead imagery.

• Fusing Ground-level and Overhead Imagery: Finally, we investigate several
methods for fusing ground-level imagery and overhead imagery together in order to
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estimate general geospatial functions. An integral part of this process is exploring
how overhead imagery can be used to bias the interpolation of sparse ground-level
image samples. Our key insight is that overhead imagery is essentially a source
of latent information that can, for example, be used for adaptive kernel bandwidth
estimation.

To support our research efforts, we construct large datasets containing both geotagged
ground-level images and overhead images. In general, each ground-level image is paired
with a co-located overhead image, centered at the ground-level image capture location.
Typically, the overhead imagery is collected at multiple spatial resolutions. This work
describes multiple such datasets, all of which have been made available to the computer
vision community.

The ultimate contribution of this thesis is a general framework for estimating geospatial
functions which integrates visual evidence from both ground-level and overhead image
viewpoints. Our approach combines the strengths of proximate sensing and remote sensing,
resulting in a general architecture that can be trained end-to-end such that it learns to extract
the optimal features from each viewpoint. Further, the proposed framework is general and
can be adapted to use any sparsely distributed measurements.

1.3 Synopsis

The remainder of this work is organized as follows:

• Chapter 2 - Are Deep Image Representations Geo-Informative?

In this chapter, we investigate the usefulness of deep image representations,
extracted from convolutional neural networks applied to traditional vision tasks, for
problems in geospatial image analysis. In particular, we analyze their discriminative
ability with regard to location through several problem settings, including region
identification in ground-level imagery, understanding and interpreting overhead
images, and cross-view image matching. Our results demonstrate the effectiveness
of deep image representations extracted from CNNs, on both ground-level and
overhead imagery, for capturing geographically discriminative features relating
image appearance to geographic location. This points to a promising direction for
future research in building deep-learning based models that are directly targeted at
problems of localization and location-related feature extraction from ground-level

6



www.manaraa.com

and overhead imagery. This work was originally reported in [127].

• Chapter 3 - Wide-Area Image Geolocalization with Overhead Reference
Imagery

In this chapter, we propose an approach for learning a joint feature represen-
tation between ground-level and overhead imagery and demonstrate its application
for the task of image geolocalization. In our cross-view problem formulation
we match against georeferenced overhead images, as opposed to standard image
geolocalization techniques, which infer the location of a ground-level query image
from a reference database of ground-level images with known location. Densely
available overhead imagery enables fine-grained geolocalization results at varying
spatial scales. Our proposed methods take advantage of deep convolutional neural
networks; we use state-of-the-art feature representations for ground-level images
and introduce a cross-view training approach for learning a joint semantic feature
representation for overhead images. We also propose a variant of our network
architecture that fuses features extracted from overhead images at multiple spatial
scales. This work was originally reported in [129].

• Chapter 4 - Understanding and Mapping Natural Beauty

In this chapter, we show how overhead imagery, in particular unlabeled over-
head imagery, can be exploited to improve image-driven mapping. To begin, we
focus on the subjective property of image scenicness and propose an approach to
predict scenicness which explicitly accounts for the variance of human ratings.
Then, given a method for predicting the scenicness of an individual ground-level
image, we explore methods for mapping image scenicness over a large spatial
region. To learn to predict image scenicness from unlabeled overhead imagery, we
apply a cross-view training approach. Instead of predicting the scenicness of the
overhead image, we predict the scenicness of a ground-level image captured at the
same location. Our results demonstrate that quantitative measures of scenicness
can benefit semantic image understanding, content-aware image processing, and a
novel application of cross-view mapping, where the sparsity of ground-level images
can be addressed by incorporating unlabeled overhead images in the training and
prediction steps. This work was originally reported in [130].
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• Chapter 5 - A Unified Model for Near and Remote Sensing

In this chapter, we propose a framework for fusing together ground-level and
overhead images for geospatial modeling. Specifically, we describe a novel con-
volutional neural network architecture for estimating geospatial functions such as
population density, land cover, or land use. Our approach uses neural networks to
extract features from both overhead and ground-level imagery. For the ground-level
images, we use kernel regression and density estimation to convert the sparsely
distributed feature samples into a dense feature map spatially consistent with the
overhead image. This ground-level feature map is then fused with an overhead
image feature map at an intermediate layer. The output of our network is a dense
estimate of the geospatial function in the form of a pixel-level labeling of the
overhead image. This work was originally reported in [131].

• Chapter 6 - Discussion

In this chapter, we summarize the contributions of this thesis and our most
important findings. In addition, we discuss possible future research directions that
will lead to improved methods for geospatial analysis.
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Chapter 2

Are Deep Image Representations
Geo-Informative?

2.1 Introduction

The relationship between image appearance and geographic location is complex, fascinat-
ing, and well studied. As such, a significant amount of work has focused on extracting
geographically discriminative location-dependent features from images. For example, re-
cent work has attempted to characterize the relationship between facial appearance and
geographic location [39], learn attributes for recognizing the identify of a city [149], and
relate the visual aesthetics and perception of fashion to geographic location [105].

The common underlying objective of such methods is to learn geographically discrim-
inative attributes [23,39,59,89] from images. The most influential work in this area is that
by Doersch et al. [19] who introduced a method for automatically finding geographically
distinctive visual elements for a region using a discriminative clustering approach applied
to a large repository of geotagged imagery. Patterson and Hays [84], and Laffont et al. [55]
learn high level scene attributes for scene recognition [55, 84]. Recently, Zhou et al. [149]
introduced a method for characterizing the identity of a city from a data-driven attribute
analysis.

Modern advances in deep learning, specifically convolutional neural networks (CNNs),
have lead to significant performance improvements for a wide variety of vision tasks, in-
cluding: object classification and detection [30], face recognition and verification [113],
image super resolution [20], and scene recognition [146]. This is in large part due to their
ability to learn custom feature hierarchies directly from raw image data. However, despite
this demonstrated success, their performance in many vision problem domains has yet to
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be established.
Several works have explored how higher-level features extracted from CNNs can be

used as generic descriptors. Razavian et al. [91] show that feature hierarchies from CNNs
are useful as generic image descriptors for object recognition. Penatti et al. [85] examine
the generalization of deep features to remote sensing, with a focus on image classification.
Recently, Lee et al. [59] applied CNNs for recognizing general geo-informative attributes
such as population density from ground-level imagery. Inspired by Fischer et al. [26], who
show that mid-level features compare favorably to a hand-engineered feature for descriptor
matching, our work extends this line of research to include problems relating to geospatial
image analysis.

This chapter investigates the value of deep image representations captured by CNNs
for geospatial image analysis. In particular we ask the question, “Are deep image repre-
sentations geo-informative?” In other words, are the features learned by CNNs capturing
information related to location? Our goal here is not to propose new learning algorithms for
CNNs. Instead, we focus on image representations extracted from existing state-of-the-art
CNNs that have been trained for various tasks. Through numerous experiments, we find
that CNNs are valuable as geospatial feature extractors. The primary contributions of this
work can be summarized as follows:

• We introduce a large new dataset that includes hundreds of thousands of pairs of
ground-level and overhead images.

• Using our proposed dataset, we demonstrate that deep image representations cap-
tured by CNNs have sufficient discriminative power to distinguish between two geo-
graphic regions in ground-level imagery, and that we can extract iconic images from
the learned models.

• Further, we show that deep image representations are useful for interpreting and
understanding overhead images, despite the CNNs being trained solely on images
from a ground-level perspective.

• In addition, we demonstrate that deep image representations extracted from ground-
level images are closely related to the features extracted from overhead images cap-
tured at the same location.

• Finally, we show how to use deep image representations for cross-view image ge-
olocalization, improving the state-of-the-art relative to previous methods that use
hand-engineered features.
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Together these results demonstrate the effectiveness of deep image representations ex-
tracted from CNNs, on both ground-level and overhead imagery, for capturing geographi-
cally discriminative features relating image appearance to geographic location.

The remainder of this chapter is organized as follows. First we describe our process
for extracting deep image representations (Section 2.2). Then, the following sections detail
our experiments in three domains: (1) distinguishing regions in ground-level imagery (Sec-
tion 2.3), (2) understanding and interpreting overhead images, including visualizing land
cover differences, improving geospatial modeling, and image-based search (Section 2.4),
and (3) cross-view image matching, in which pairs of overhead and ground-level images are
used to localize images in regions without ground-level reference imagery (Section 2.5).

2.2 Deep Features for Geospatial Image Analysis

In this section we provide an overview of convolutional neural networks and the notion
of deep image representations. We start with a brief history on applying CNNs for image
understanding, then highlight details about our process for extracting deep image represen-
tations, and finally introduce the datasets that support our experiments.

2.2.1 Background: CNNs for Image Understanding

Deep learning is an emergent area of machine learning research that uses artificial neu-
ral networks to model high-level abstractions of input data for some task (e.g., vision
and speech recognition). Artificial neural networks are inspired by the biological neural
networks that exist in the brain. Biological neural networks are composed of a series of
interconnected neurons, where a neuron is a cell that receives and transmits information
through electrical signals. Practically, a single neuron operates by receiving a set of input
signals, checking if the sum of the input exceeds a certain threshold and if so, the neuron
“activates”, transmitting a signal forward to other neurons.

The study of artificial neural networks dates back to the early 1940s when McCulloch
and Pitts [74] used logical calculus to create a computation model of nervous system activ-
ity. In 1958, Frank Rosenblatt [94] introduced the perceptron, an algorithm to model the
hypothetical nervous system. The perceptron was implemented as a machine, the “Mark
1 perceptron”, designed for image recognition. Today the perceptron is known as a single
layer neural network acting as a linear classifier. Due primarily to research by Minsky
and Seymour [76] showing the limits of single layer neural nets and the lack of available
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computational power, neural network research stagnated until the introduction of the now
famous backpropagation algorithm by Paul Werbos [125] in 1974.

It wasn’t until the late 1980s that the backpropagation algorithm was applied to multi-
layer, or “deep”, neural nets. In 1989 LeCun et al. [58] showed how backpropagation
could be used to train a neural network with multiple layers for the task of handwritten
digit recognition. In the modern sense, deep learning refers to an artificial neural network
that combines several stages of non-linear feature transformations into a deep architecture,
where a stage, or layer, consists of many neurons followed by a non-linear activation func-
tion. Effectively, this allows a deep network to create a high-level abstraction of the input,
or in other words, build a hierarchy of feature representations for the given task. Each layer
transforms its input into a higher-level feature.

At the same time, LeCun et al. [58] introduced layers of convolution in these models,
a seminal idea that led to the widespread use of neural network variants called convolu-
tional neural networks by the vision community. As opposed to typical “fully connected”
networks, where each layer input is connected to each output, the spatial information in-
herently contained in images is exploited by CNNs through connectivity constraints that
enforce locally contiguous receptive fields. A side benefit of this local connectivity and
sharing of convolution functions (filters), is a reduction in the total number of model pa-
rameters. Typically, CNN architectures use several convolutional layers, each followed by
some form of regularization or normalization (e.g., sub-sampling (pooling), dropout [108]).
The last layers are often similar to standard fully connected neural networks, and act as
non-linear classifiers or regressors.

Until recently, training large CNN models was impractical due to the large number of
parameters (in the tens of millions) and small training sets. Improvements in processing
power, for example graphical processing units (GPUs), along with the introduction of large
training datasets and superior optimization algorithms, led to significant performance im-
provements for CNNs in several traditional computer vision tasks. The seminal work of
Krizhevsky et al. [54], winner of the 2012 Large Scale Visual Recognition Challenge [98],
demonstrated the first successful application of a CNN architecture for object recognition.
This architecture is often referred to as AlexNet, and we adopt it for this work.

The AlexNet architecture consists of eight layers with trainable parameters. Five con-
volutional layers are connected in a feed-forward manner, interspersed with pooling layers
and regularization layers such as local response normalization and dropout. The convolu-
tional layers are followed by three fully connected layers. Rectified linear units (ReLU) are
used as the non-linear activation function. The model is trained by minimizing a multino-
mial logistic loss function. Intuitively, the convolutional layers extract local features across
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the image and the fully connected layers combine them to make a prediction.

2.2.2 Pretrained CNN Models

The recent success of CNNs for image understanding has sparked the development of sev-
eral modular and expandable deep learning libraries (e.g., Caffe [47], Theano [9]) that
have made it easier for researchers to share findings in this domain. In this work we use the
Caffe [47] library due to its widespread adoption and a large database of pretrained models.
Pretrained models contain a network architecture and corresponding model parameters.

As a beneficial side effect, common naming schemes of the various structural elements
of deep neural networks have also been widely adopted in the vision community. Convolu-
tional layers, whose output are feature maps, are referred to as convX, where X denotes the
layer’s depth away from the data input layer. Similarly for other layer types such as pooling
layers, poolX, and fully connected layers, fcX. Using Caffe or another similar framework it
is straightforward to extract the feature corresponding to a layer. Given a mean subtracted
image, we resize it to the input size of the network and make a feed-forward pass through
the network.

To investigate CNN features as geospatial information predictors, we make use of two
publicly available pretrained models, both of which use the AlexNet architecture. The
first is trained on ImageNet [17] for detecting object categories and is available through
Caffe [47]. The second is trained on the recently introduced Places Database [146] with
the goal of scene recognition. We refer to these as ImageNet and Places throughout. Other
than having differing model parameters, the only difference between the ImageNet and
Places models is the dimensionality of the final fully connected layer, which is dependent
on the number of target labels in the original classification task (ImageNet has 1,000 ob-
ject classes, Places 205 scene classes). In line with recent work [62, 91], we focus our
experiments on the features corresponding to the fully connected layers, fc6 – fc8.

2.2.3 Datasets

We perform our experiments using two datasets. The first dataset, Charleston, was in-
troduced by Lin et al. [66] and contains 6,756 ground-level images with corresponding
overhead and land cover images, and a reference map database of overhead and land cover
images, without corresponding ground-level images, for a 40km × 40km region around
Charleston, SC. Of the ground-level images, 737 are considered isolated because there are
no other ground-level images nearby.
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(a) (b) (c)

Figure 2.1: Overview of the introduced San Francisco dataset. (a) A coverage map where
red indicates the spatial coverage of overhead imagery, overlaid with Street View (green)
and Flickr (blue) image locations. (b) Example Street View panoramas (top) and their
corresponding cutouts (bottom). (c) Example Flickr images after filtering.

We introduce a new dataset, San Francisco, containing ground-level and overhead im-
ages collected in a 200km × 200km region around San Francisco, CA. We collected over-
head imagery for the entire region from Bing Maps, each image of size 256 × 256 and
covering a 480m × 480m area, as the reference map database. Ground-level images from
the region were collected from both Flickr and Google Street View. For Flickr, we queried
and downloaded images from 2013 onwards, totaling 114,384 images. We used the pre-
trained Places model to filter images that were unlikely to be images of outdoor scenes
by manually assigning a label of indoor/outdoor to each of the 205 scene categories. This
resulted in a final set of 74,217 images. For Street View, we downloaded 50,000 street-
level panoramas from which we extracted two side-facing perspective images of size 800
× 600, totaling 100,000 images. Finally, for each ground-level image we downloaded its
corresponding overhead image, centered at the same location.

Our proposed dataset, while similar in conception to Charleston, has several benefits.
These include a significantly larger region of interest for localization, many more images,
a different region of the country with different land cover attributes, automatic filtering
of non-outdoor images, and a large number of images with accurate GPS tags (by virtue
of Google Street View). In total, the dataset contains 278,561 map images and 174,217
ground-level images and their associated overhead images. As with the Charleston dataset,
we identify a set of isolated images, totaling 2,245 ground-level images. Figure 2.1 visual-
izes the coverage of our dataset and shows several example images.

2.3 Distinguishing Regions in Ground-Level Imagery

Our first experiment explores whether or not deep image representations are geo-
informative by formulating a supervised learning task to distinguish between images
captured in Charleston and San Francisco, two cities in very diverse regions. In other
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Table 2.1: Region classification accuracy.

Feature Accuracy
GIST [83] 81.7 %
ImageNet fc6 82.7 %
ImageNet fc7 82.2 %
ImageNet fc8 80.9 %
Places fc6 85.1 %
Places fc7 85.1 %
Places fc8 84.5 %

words, we examine the task of classifying dataset membership, i.e., was the picture taken
in San Francisco or Charleston? This is similar to recent work by Zhou et al. [149]
that attempts to recognize the identity of a city given a ground-level image. However,
instead of using high-level attributes to relate images to location, we examine deep image
representations extracted from pretrained CNN models.

To begin, we process each ground-level image to extract deep image representations
corresponding to the fc6, fc7, and fc8 layers of the ImageNet and Places models, as de-
scribed in Section 2.2.2. Using these features as input, we train an SVM classifier with an
RBF kernel, on a set of randomly selected ground-level images from each dataset, one for
each feature and model. This results in six independent SVM classifiers. For evaluation,
we use an equal number of images from the isolated set of images defined in both datasets.

Table 2.1 gives a comparison of the accuracy of the different features, trained using
10,000 images from each dataset. As a baseline, we compare against the GIST descrip-
tor [83], a common hand-engineered feature used in scene recognition tasks. We find that
in general features from both the Places and ImageNet models are superior to GIST, and
that Places is superior to ImageNet. However, the differences between the various feature
levels is minor.

Figure 2.2 shows montages of ground-level images classified by the SVM model trained
on Places fc8 features with very high and very low confidences. Many of the detected
images are iconic images of the corresponding region, for example the Golden Gate Bridge
in San Francisco. In addition, Figure 2.2 shows montages of images in San Francisco that
the classifier determines look most like Charleston, and vice-versa. Finally, Figure 2.3
shows a montage of the most ambiguous images, many of which would be very difficult
for a person to label correctly. This experiment demonstrates that CNN features capture
subtle characteristics of various areas from ground-level imagery.

Figure 2.4 shows how the accuracy of our region classification approach depends on
the number of training examples. We select N training examples, 50% from each region,
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(a) Most Charleston-like in either region (b) Most San Francisco-like in either region

(c) Most Charleston-like in San Francisco (d) Most San Francisco-like in Charleston

Figure 2.2: Montages of ground-level images with high, or low, SVM scores for a model
trained on Places fc8 features (see Section 2.3 for details). (a, b) Images with the highest
and lowest SVM scores. (c, d) Images from the respective regions with the most incorrect
SVM scores.

Figure 2.3: The most ambiguous images based on the SVM score for a region classifier
trained on Places fc8 features, as described in Section 2.3.
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Figure 2.4: Region classification accuracy versus training set size.

at random and train a classifier, using the Places fc8 features. We repeat this 60 times for
each N and show the average. The results show that with a relatively small number of
training examples (only 250 per region) we obtain relatively high accuracy. Increasing the
number of training examples results in only minor improvements. This highlights that the
feature space is geo-informative.

2.4 Overhead Imagery Analysis

We now present insights into the performance of representations captured by ImageNet
and Places, but applied to overhead imagery. Despite being trained solely on ground-level
imagery, our experiments show that both the ImageNet and Places CNNs extract strongly
location-related features from overhead imagery.

2.4.1 Visualizing Deep Image Representations

To understand the differences between deep image representations for ground-level and
overhead images, we visualize the response of the units of various layers in the Places
model. Our strategy for generating the visualization of these responses follows that of
Zhou et al. [146]: given a unit (i.e., node, neuron) at a layer, push a set of images through
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Ground-level Images on Places Overhead Images on Places
pool2 pool5 fc7 pool2 pool5 fc7

Figure 2.5: (left) Averages of the top 100 images that activate a subset of pool2, pool5,
and fc7 layers of ground-level images on the Places model. Each montage is sorted by the
first PCA coefficient of the corresponding image. (right) The result of the same procedure
applied to overhead images. Note that unlike ground-level imagery, the average images of
the overhead imagery are more uniform due to the nature of the viewpoint.

the network, sort the images by their activation response at that unit, and average the top
100 images. The result is a visualization that captures the receptive field of that unit. To
produce the final visualization for a layer, the mean images from different units are sorted
by the first principal component coefficient computed using PCA. Figure 2.5 visualizes the
learned representations of the pool2, pool5, and fc7 layers, for a set of ground-level and
overhead images.

There is a drastic difference between the representations for ground-level and overhead
images. Similar to that shown by Zhou et al. [146], the receptive fields for the ground-
level set of images look like landscapes and other spatial structures, for instance in several
of the mean images you can make out the sky or buildings. This is not the case for the
receptive fields from the overhead set of images, where some filters seem to correspond
to road orientation, terrain, and vegetation. These visualizations indicate that deep image
representations are informative for overhead images despite being trained on images of a
different viewpoint.

2.4.2 Exploring Relationship with Land Cover

We begin with an analysis of deep image representations for visualizing and understanding
land cover. For this experiment, we use fc8 features from the Places model, computed for
each image in the overhead reference database of both the Charleston and San Francisco
datasets. Starting from these features, we apply principal component analysis (PCA) to
generate a synthetic overhead image for each region which we then visualize and compare
versus a ground-truth land cover map. The results of this process are shown in Figure 2.6.
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(a) Charleston (b) San Francisco

Figure 2.6: Synthetic overhead images (right), constructed by performing PCA analysis on
Places fc8 features from small overhead images, highlights different types of land cover
(left). For example, regions that are over water (pink), forest (yellow), and urban (green)
areas are all clearly visible as unique colors.

To generate the synthetic overhead image we use the top three principal components.
For each map location we have a 3D PCA coefficient; we use the first, second, and third
coefficient as the red, green, and blue color channels, scaling each color channel to [0, 1]

and using natural neighbors interpolation. The result is an image that encodes the dominant
feature appearance variations as different colors. Upon closer inspection of the synthetic
overhead images and corresponding land cover maps, the three PCA coefficients of the
CNN feature vectors of overhead imagery are very closely related to land cover. For exam-
ple, pink corresponds to areas containing water, and green corresponds to urban areas.

To explore this relationship further, we augmented the overhead images in the reference
map database for San Francisco with a ground-truth land cover label obtained from the Na-
tional Land Cover Database [36] (NLCD). NLCD uses a 16 class land cover classification
scheme which we aggregate into higher level groups resulting in 8 classes: water, devel-
oped, barren, forest, shrubland, herbaceous, planted/cultivated and wetlands. Figure 2.7
shows the embedding computed using t-Distributed Stochastic Neighbor Embedding [120]
(t-SNE), a popular nonlinear dimensionality reduction technique, visualized against the
land cover labels. Despite not being trained on overhead images, or for the task of land
cover estimation, the features are highly geo-informative and closely related to land cover
classes. The embedding clearly groups together overhead images with the same ground-
truth land cover class.

2.4.3 Analyzing Semantic Co-occurrence Between Viewpoints

Given our findings that deep image representations are useful for describing both ground-
level and overhead imagery, we now investigate whether such representations are useful
as a joint feature representation by analyzing the co-occurrence of feature activations for
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Figure 2.7: Visualizing land cover in overhead imagery using t-SNE [120], a non-linear
unsupervised dimensionality reduction technique, to embed Places fc8 features. The em-
bedding produces well defined clusters in relation to the ground-truth land cover classes
and shows separation in the high-dimensional feature space.

ground-level and overhead images captured at the same location. Our hypothesis is that
deep image representations from models trained solely on ground-based imagery are posi-
tively correlated for co-located overhead imagery, despite drastic differences in viewpoint.

For this experiment, we take advantage of the known semantic meaning which can be
inferred from the last fully connected layer, fc8, in the AlexNet architecture. Applying the
softmax function, σ(xj) = exj∑K

k=1 e
xk

, to each element of theK-dimensional output vector x,

results in a categorical probability distribution, σ(x), over K classes, since
∑K

i=1 σ(xi) =

1. For the Places model, this results in a distribution over 205 scene classes.
We start with the ground-level and overhead image pairs in the San Francisco dataset.

For each image, we compute the fc8 feature from Places and convert it to the corresponding
categorical probability distribution. To examine the relationship between the distributions
of co-located images, we compute the Pearson correlation coefficient between each pair of
a subset of the 205 scene classes. To do this, we stack the distributions together to form two
matrices, one for overhead and one for ground-level images, of size 174,217 × 205, with
dimensions corresponding to number of images and number of scene classes, respectively.
We then compute the Pearson’s correlation coefficient between each pair of columns in
these two matrices, producing a correlation matrix of size 205× 205.

To highlight semantic groupings, we sort the correlation matrix using a Ward-linkage
based hierarchical clustering algorithm applied to each row. This results in a semantically
meaningful ordering of the scene categories. Figure 2.8 visualizes the result of this exper-
iment. We observe that the correlation matrix has a visible block diagonal structure. The
main block in the upper left contains mostly rural classes and the larger block in the lower
right is mostly urban classes. Examples of classes for which the ground-level and overhead
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Figure 2.8: Analyzing the semantic co-occurrence of features extracted from co-located
ground-level and overhead imagery in the San Francisco dataset. See Section 2.4.3 for
algorithm details. Due to space constraints only every third label is shown.

image features are highly correlated include “desert” and “river”. These results support our
hypothesis that deep image representations are useful as a joint feature representation for
ground-level and overhead images.

2.4.4 Improving Geospatial Modeling

Given the encouraging results from the previous sections, we now investigate the extent to
which overhead imagery can be used to directly make predictions and improve geospatial
modeling. Our hypothesis is that overhead imagery can be leveraged to augment ground-
level imagery in order to create fine-grained geospatial models.

We test our hypothesis using the following strategy. Similar to Section 2.4.3, we com-
pute the categorical probability distribution from the Places model for each ground-level
image in the San Francisco dataset. We then select the entries corresponding to three scene
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Figure 2.9: Leveraging overhead imagery to improve geospatial modeling (see Sec-
tion 2.4.4 for details). The results shown correspond to three scene categories
(urban=“parking lot”, rural=“field/wild”, and water=“ocean”) for the San Francisco
dataset. The images above represent false-color distributions (red=urban, green=rural
and blue=water) represented by: (left) a scatter plot of ground-level images, (middle)
Nadaraya-Watson kernel regression with three different bandwidths on the sparse samples,
and (right) using dense overhead imagery instead.

classes that are highly correlated between ground-level and overhead viewpoints: “parking
lot”, “field/wild”, and “ocean”. This results in a 3× 1 vector of class probabilities for each
image. We then generate a scatter plot of the ground-level image locations, using the class
probabilities as a false-color image (the red channel corresponding to “parking lot”, green
as “field/wild”, and blue as “ocean”). Figure 2.9 (left) visualizes this intermediate result.
We then interpolate this sparse set of samples using Nadaraya-Watson kernel regression,
with the latitude/longitude location of each ground-level image as the input features. In
Figure 2.9 (middle), the results show that no choice of kernel bandwidth is free of notice-
able artifacts. The result is either too smooth or too noisy.

To overcome the artifacts introduced by interpolating sparse ground-level imagery, we
apply the same strategy to the densely sampled overhead imagery in the San Francisco
map database instead. In Figure 2.9 (right), the results show this method is able to cap-
ture high resolution local structure with minimal artifacts. As an example, the coastline
of San Francisco is clearly visible only when using dense overhead imagery, as opposed
to the sparse ground-level samples, or kernel regression techniques. These results support
our hypothesis that overhead imagery is useful for improving geospatial modeling. This
suggests that cross-view, i.e., ground-level and overhead, image analysis is a powerful tool
for capturing geospatial distributions. The unprecedented density, both spatial and tempo-
ral, of overhead imagery has the potential to make maintaining up-to-date high-resolution
geospatial models much more cost-effective.

2.4.5 Image-Based Search

The richness of these deep image representations applied to overhead imagery suggests a
novel user-focused application in image-based search. Consider the following scenario: a
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Query Image

True Ground

Query Image

True Ground

Figure 2.10: Overhead image-based search for characterizing unimaged ground-level loca-
tions. Given a query overhead image (top, left), we find the most similar overhead images
(top, right) in the map database, and infer hypothetical ground-level images (bottom, right).
The results are realistic when compared to the true ground-level image (bottom, left).

person is browsing a map and is curious about the ground-level appearance of a particular
location, but no ground-level image is available at that particular location.

We propose a method to search for ground-level images using only the current overhead
image and a reference dataset of overhead and ground-level image pairs. Our approach
consists of three steps: (1) compute CNN features on the current map location, (2) compute
the Euclidean distance between this feature and all map images in the reference database,
and (3) present the user with the ground-level images that had the most similar overhead
images.

Several results of this approach, shown in Figure 2.10, demonstrate that we are able to
retrieve a realistic set of ground-level images (as compared to the true ground-level image)
by querying on the appearance of the overhead view. Our approach clearly finds images
that would not have been found by matching on the ground-level view. For instance, in
Figure 2.10 (bottom), querying using the overhead image results in images that do not
contain a building, contrary to what one would expect if the query were the ground-level
image (which contains a building).
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2.5 Cross-View Image Matching

The canonical computer vision task in this domain is image localization. Given an image,
where was it captured? While some images provide strong localization cues and are easily
found, such as a view of the Statue of Liberty from Ellis Island or the Coliseum in Rome,
others only provide weak evidence of their geographic location. For such images, it may
only be possible to guess the region in which the image was taken. A wide variety of
approaches have been proposed for the former problem, while the latter problem has only
received significant attention recently.

Data-driven image localization is often reformulated as an image retrieval problem, of-
ten called visual place recognition. Standard approaches use machine learning techniques
to find visually overlapping images from a reference set of ground-level images with known
geographic location. These methods generally fall into two categories, matching using lo-
cal features [4, 13, 15, 100, 107] or global image features [34, 43]. Many other cues for
localization have been explored which take advantage of photometric and geometric prop-
erties [41, 42, 128].

When no nearby ground-level imagery is available, existing methods that localize via
direct visual similarity [34] are not applicable. To address this, the problem of cross-
view image localization [66, 67, 127, 129] has recently been investigated. In this scenario,
ground-level imagery is matched to overhead imagery instead. The underlying premise is
that overhead imagery, which is available practically everywhere compared to the relatively
sparse coverage of geotagged ground-level images, can be exploited to produce dense lo-
calization estimates.

The cross-view localization problem is inherently more difficult than the single-view
problem, due to the dramatic differences in viewpoint of the two image sets. Lin et al. [66]
explored several strategies for characterizing this relationship. Their methods build on
hand-engineered global image descriptors, such as GIST, and combine them with land
cover attributes in an attempt to learn a feature translation between the two viewpoints.
Their most successful method combines a feature averaging strategy with a supervised
learning technique.

Given our findings that deep image representations are highly location-dependent, even
for overhead imagery, we analyze their performance for this task. Our strategy is similar
to Lin et al. [66]: given a query image, we first find the closest 30 ground-level images in
the training set by comparing their associated feature vector. For this set of neighbors, we
average the features of their corresponding overhead images and use this as our query to
search the overhead image reference database. In both cases, we use Euclidean distance as
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Figure 2.11: Accuracy of localization as a function of retrieved candidate locations. Our
method, using Places fc8 features, significantly outperforms Lin et al. [66], the previous
best method on the Charleston dataset.

our distance metric. We convert the distance, d, between two feature vectors to a similarity
score using: s = 1

1+d
. This results in a score for every map location.

We evaluate this technique on both the Charleston and San Francisco datasets, using the
isolated set of images (images for which no nearby ground-level images exist). The per-
formance metric used is the same as described by Lin et al. [66]; given the scores for each
location, we compute the rank of the ground-truth location in the sorted list. Figure 2.11
visualizes our results as a cumulative distribution function of the fraction of query images
correctly localized versus the percentage of candidate images retrieved.

In Figure 2.11 (left), we compare the results of our method on the Charleston dataset,
using several model and feature combinations (here prob corresponds to the categorical
probability distribution produced by applying a softmax to the fc8 feature). Our approach
is highly effective, outperforming Lin et al. [66], the previous state-of-the-art method of
those using hand-engineered features, by a large margin without requiring any land cover
imagery, manual selection of features, or learning. In terms of top 1% accuracy, our best
result, using Places fc8 features, correctly localizes 18.45% of query images versus the
17.37% reported by Lin et al. [66], a 1.08% increase and a relative improvement of 6.22%.
This trend continues as the localization threshold, the percentage of candidate images re-
trieved, is increased. Figure 2.11 (right) shows similar results on the San Francisco dataset.
In both cases, we find Places fc8 features to be the best for this task.

In Figure 2.12, we visualize the localization result for three example query images from
each dataset using several different features extracted from the Places model. To generate
these results, we visualize the similarity scores for each map location as a heatmap, where
red indicates a higher likelihood that the image was captured at that location. Similar to
the quantitative results in Figure 2.11, we observe qualitatively that fc8 features outperform
the features from other layers.
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Query Image Places fc6 Places fc7 Places fc8 Places prob

Figure 2.12: False-color images that represent the likelihood that an image is at a particular
location. In each, red represents high likelihood, blue represents low, and the ‘x’ marks the
true location. See Section 2.5 for an algorithm description.
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2.6 Conclusion

This chapter attempted to answer the question, “Are deep image representations geo-
informative?” Through experiments on a wide variety of geolocation-related computer
vision tasks, we found that deep image representations are significantly more powerful
than hand-engineered features.

Our experiments showed that for distinguishing the region of ground-level images, deep
image representations outperformed a commonly used off-the-shelf feature descriptor and
also provide a method to identify images that capture the relative appearance of two places.
In addition, we found that CNN features give state-of-the-art results on the challenging
problem of cross-view image geolocalization, when compared with methods that use hand-
engineered features.

Interestingly, features from the Places model, which was trained for scene classifica-
tion, outperformed features from the ImageNet model, which was trained for object recog-
nition, on all geospatial problems we explored. This is in line with recent findings in a
study of transferability of features by Yosinski et al. [139]; when transferring features, per-
formance is related to the specificity of the task. In other words, features suited for scene
classification appear to be more geo-informative than those for object detection.

Most notably, we found that both the ImageNet and Places models extract strongly
location-related features on overhead imagery, and demonstrated that these features can be
exploited to relate co-located ground-level and overhead images. This is surprising because
these models were trained on imagery from a vastly different viewpoint. This points to a
promising direction for future research in building deep-learning based models that are
directly targeted at problems of localization and location-related feature extraction from
ground-level and overhead imagery.

Copyright c© Scott Workman, 2018.
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Chapter 3

Wide-Area Image Geolocalization with
Overhead Reference Imagery

3.1 Introduction

In this chapter, we address the problem of cross-view image geolocalization, which aims
to localize ground-level query images by matching against a database of overhead images
(Figure 3.1). This contrasts with the majority of existing image localization methods which
infer location using visual similarity between the query image and a database of other
ground-level images. The inherent limitation with these approaches is that they fail in
locations where ground-level images are not accessible. Even with hundreds of millions of
geotagged ground-level images available via photo-sharing websites and social networks,
there are still very large geographic regions with few images; most images are captured in
cities and around famous landmarks [15].

Cross-view image geolocalization is motivated by the observation that the distribution
of geotagged ground-level imagery is relatively sparse in comparison to the abundance
of high-resolution overhead imagery. The underlying idea is to learn a mapping between
ground-level and overhead image viewpoints, such that a ground-level query image can
be directly matched against an overhead image reference database. In contrast to previous
work [66] which used hand-engineered features, we propose to learn feature representa-
tions using deep convolutional neural networks (CNNs). Our methods build upon recent
success in using CNNs for ground-level image understanding [54, 146].

We refer to our approach as cross-view training. The idea is take advantage of existing
CNNs for interpreting ground-level imagery and use a large database of ground-level and
overhead image pairs of the same location to learn to extract semantic, geo-informative

28



www.manaraa.com

joint semantic 
feature space

se
ar
ch
'

aerial image database
ground-level 
query image

estimated location

most similar 
image

Figure 3.1: We learn a joint semantic feature representation for overhead and ground-level
imagery and apply this representation to the problem of cross-view image geolocalization.

features from overhead images. This is a general strategy with many potential applications
but we demonstrate it in the context of cross-view geolocalization.

Our work makes the following main contributions: (1) an extensive evaluation of off-
the-shelf CNN network architectures and target label spaces for the problem of cross-view
localization; (2) cross-view training for learning a joint semantic feature space from dif-
ferent image sources; (3) a massive new dataset with multi-scale overhead imagery; (4)
state-of-the-art performance on two smaller-scale evaluation benchmarks for cross-view
geolocalization; and (5) extensive qualitative evaluation, including visualizations, which
highlights the utility of cross-view training.

3.2 Related Work

Estimating the geographic location at which an image was captured based on its appearance
is a problem of great interest to the vision community. In recent years, a plethora of meth-
ods for automatic image geolocalization have been introduced [4,19,34,53,61,149]. A wide
variety of visual cues have been investigated, including photometric and geometric proper-
ties such as sun position [14, 56, 128], shadows [48, 99, 133], and weather [41, 42, 111].

Despite this breadth, the dominant paradigm is to formulate the localization problem as
image retrieval. The premise is to take advantage of the ever-increasing number of publicly
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available geotagged images by building a large reference dataset of ground-level images
with known location. Then, given a query image, infer its location by finding visually
similar images in the dataset. These methods generally fall into one of two categories.
The first category of methods infer location by matching using local image features [4,
13, 15, 100, 107, 116, 140]. The second category of methods match using global image
features [34,43,149]. Matching with local image descriptors is advantageous in that a more
precise location estimate is possible, but often requires additional computational resources
and fails when no visual overlap exists with the reference dataset. Conversely, whole image
descriptors provide a weaker prior over location but require less computation and provide
a foundation for many other image understanding tasks.

Estimating geographic information from a single image match requires learning geo-
graphically discriminative, location-dependent features [19,23,39,89]. The recent surge of
deep learning in computer vision has shown that convolutional neural networks can learn
feature hierarchies that perform well for a wide variety of tasks, including object recogni-
tion [54], object detection [30], and scene classification [146]. Razavian et al. [91] further
show that these feature hierarchies are useful as generic descriptors. Lee et al. [59] estimate
geo-informative attributes from an image using convolutional neural network classifiers.

Only recently has overhead imagery been discovered as a valuable resource for ground-
level image understanding [7, 70]. Shan et al. [104] geo-register ground-level multi-view
stereo models using ground-to-aerial image matching. Viswanathan et al. [121] evaluate
a number of hand-engineered feature descriptors for the task of ground-to-aerial image
matching in robot self-localization. The cross-view image geolocalization problem was
introduced by Lin et al. [66]. Workman et al. [127] show that features extracted from con-
volutional neural networks are useful for problems in geospatial image analysis. Most akin
to our work, Lin et al. [67] apply a siamese CNN architecture for learning a joint feature
representation between ground-level images and 45◦ oblique overhead imagery. Our ap-
proach is more general; we operate on orthorectified overhead imagery, do not require scale
and depth metadata for each query, and our joint feature representation is semantic.

3.3 Cross-View Training for Overhead Image Feature
Extraction

We propose a cross-view training strategy that uses deep convolutional neural networks to
extract features from overhead imagery. The key idea is to use pre-existing CNNs for ex-
tracting ground-level image features and then learn to predict these features from overhead
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Figure 3.2: Existing CNNs trained on ground-level imagery provide high-level semantic
representations which can be location dependent. Each point represents a geotagged image
extracted from a Google Street View panorama, colored according to the predicted scene
category from the Places [146] network.

images of the same location. This is a general approach that could be useful in a wide
variety of domains. It is conceptually similar to domain adaptation [16], where the source
domain is the ground-level view and the target domain is overhead imagery. The end result
of cross-view training is a CNN that is able to extract semantically meaningful features
from overhead images without manually specifying semantic labels.

3.3.1 Cross-View Feature Representations

We assume the existence of two functions: fa(l; Θa), which extracts features from the
overhead imagery centered at location, l, and fg(I; Θg), which extracts features from a
ground-level image. Here, Θg and Θa are the parameters for feature extraction. We propose
to use deep feed-forward convolutional neural networks as the feature extraction functions,
fa and fg. In this framework, the parameters of these functions, Θa and Θg, include both
the network architecture and the weights.

Our main insight is that we can take advantage of the significant progress that has been
made applying CNNs to ground-level image understanding in the past several years by
transferring feature representations to overhead images. This is possible if the location of
the ground-level imagery is known. For example, in Figure 3.2, we show the estimated
label from the Places [146] network, trained for the task of scene classification, on a set of
images extracted from Google Street View panoramas captured across the United States.
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The predicted label is clearly location dependent. For the purposes of learning a useful
overhead image feature function, what matters is that the ground-level features are geo-
informative, not necessarily that the ground-level detector is perfect.

We compare alternative choices for ground-level feature extraction in Section 3.4 for
the problem of cross-view image geolocalization. In the remainder of this section, we de-
scribe our cross-view training approach to adapt a network trained for ground-level feature
extraction to overhead imagery.

3.3.2 Cross-View Training a Single-Scale Model

Given a semantically meaningful feature representation for ground imagery, we propose to
extract features from overhead imagery, which we refer to as cross-view training. Given a
set of ground-level training images, {Ii}, with known location, {li}, and known ground-
level feature extractor parameters, Θg, we seek a set of parameters, Θa, that minimize the
following objective function:

J(Θa) =
∑
i

‖fa(li; Θa)− fg(Ii; Θg)‖2. (3.1)

Intuitively, the objective is to learn to extract features from the overhead imagery that match
those from a corresponding ground-level image.

3.3.3 Cross-View Training a Multi-Scale Model

The view frustum of ground-level imagery can vary dramatically from image to image. It is
possible that the nearest object in the scene is hundreds of meters away or that the furthest
object is tens of meters. This introduces ambiguity when matching the location observed by
a ground-level image to the known geolocation of the overhead imagery. To address this
issue, we extend our overhead image feature function, fa, to support extracting features
at multiple spatial scales. Rather than mapping a single ground-level image to a single
overhead image, the multi-scale approach allows for a ground-level image to be matched
to overhead images at multiple scales. In support of multi-scale, cross-view training, we
introduce a large dataset of ground-level and overhead image pairs.

3.3.4 A Large Cross-View Training Dataset

Previous cross-view datasets have been limited in spatial scale and number of training
images. The largest dataset [127] contains 174,217 training image pairs sampled from a
200km × 200km area around San Francisco. Features learned using such a dataset are
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(a) Google Street View (b) Flickr

Figure 3.3: The distribution of ground-level images in the CVUSA dataset.

Figure 3.4: Example matched ground-level and overhead images from the CVUSA dataset.

unlikely to be as effective when applied to another location. In an effort to broaden the
applicability of the learned feature extractor, we constructed a massive dataset of pairs of
ground-level and overhead images from across the United States, called the Cross-View
USA (CVUSA) dataset.

Geotagged ground-level images were collected from both Google Street View and
Flickr. For Google Street View, we randomly sampled from locations within the continen-
tal United States. At each location, we obtained the corresponding panoramic image and
extracted two perspective images from viewpoints separated by 180◦ along the roadway.
For Flickr, we divided the area of the United States into a 100× 100 grid and downloaded
up to 150 images from each grid cell (from 2012 onwards, sorted by the Flickr “interest-
ing” score). As Flickr images are overrepresented in urban areas, this binning step ensures
a more even sampling distribution. From this set, we automatically filtered out images of
indoor scenes using the Places [146] scene classification network by retaining images that
match to one of the outdoor scene categories.

This process resulted in 1,036,804 Street View images and 551,851 Flickr images. Fig-
ure 3.3 visualizes the relative density of each set of images. For each ground-level image,
we downloaded an 800 × 800 overhead image centered at that location from Bing Maps,
at multiple spatial scales (zoom levels 14, 16 and 18). After accounting for overlap, this
results in 879,318 unique overhead image locations and a total of 1,588,655 million geo-
tagged, image matched pairs. Figure 3.4 shows several example matched ground-level and
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overhead images from our dataset.

3.4 Application to Cross-View Localization

We focus on the problem of cross-view image geolocalization [66] in which the goal is to
use a database of overhead images, with known location, to estimate the geographic loca-
tion of a ground-level query image in that region. This is a challenging problem because
of the dramatic appearance differences between ground-level and overhead viewpoints.

3.4.1 Evaluation Datasets

We evaluate our proposed cross-view training approach on two existing benchmark
datasets. The first dataset, Charleston, was introduced by Lin et al. [66] and contains
imagery from a 40km×40km region around Charleston, South Carolina. In total, there are
6,756 ground-level images collected from Panoramio, each with an associated overhead
image and land-cover attribute map centered at its location. The overhead image reference
database contains 182,988 images. The second benchmark dataset, San Francisco, is
introduced by Workman et al. [127] and contains imagery from a 200km× 200km region
around San Francisco, California. Ground-level imagery consists of 74,217 images from
Flickr and 100,000 Street View cutouts. Similar to Charleston, each ground-level image
is accompanied by a corresponding overhead image centered at the ground-level image
location. The overhead image reference database contains 278,561 images. Each dataset
identifies a set of “hard to localize” ground-level images, with no nearby ground-level
reference imagery, to be used for evaluation.

3.4.2 Localization Method and Performance Metric

The process for localizing a ground-level query image, Î , is straightforward. We di-
rectly compare the ground-level feature, fg(Î; Θg), for the query image against a reference
overhead image feature, fa(l; Θa), at location l, using Euclidean distance ‖fa(l; Θa) −
fg(Î; Θg)‖2. If a single pinpoint match is needed, we return the geolocation of the image
that is the nearest neighbor of the ground-level image in feature space; otherwise we re-
turn a list of candidate regions sorted by distance in feature space. As described by Lin et
al. [66], the performance metric for this problem is the rank of the ground truth location in
the sorted list of localization scores, for a set of overhead image reference locations. We
represent the localization results using a cumulative graph of the percentage of correctly
localized images as a function of the percentage of candidates searched.
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Figure 3.5: Comparison of several off-the-shelf CNN features in terms of localization ac-
curacy on the Charleston dataset.

3.4.3 Localization using Off-The-Shelf CNN Features

As a baseline to our cross-view training approach, we evaluated the localization perfor-
mance of “off-the-shelf” CNN features on Charleston. We extracted features from both the
overhead and ground-level query image using a variety of network architectures trained for
different target label spaces. The network architectures used included GoogleNet [112],
AlexNet [54], NIN [65], and VGG 19 [12]. Training databases included Places [146],
ImageNet [98], Hybrid [146], Oxford Flowers [81], and Flickr Style [49]. We evaluated
multiple such configurations, all publicly available as Caffe [47] model files.

Our findings from this experiment are visualized in Figure 3.5. The top two performing
configurations in terms of top 5% accuracy are trained for the task of scene classification
on the Places [146] database, which contains over two million images labeled from 205
different categories. These two networks vastly outperform the next best network, which
was trained on ImageNet for the task of object recognition. These results are interesting,
but unsurprising, as scenes are more likely to be visible from overhead imagery. For the
rest of the experiments, we apply cross-view training to learn an overhead image feature
extractor for Places features using the AlexNet architecture [146], which we refer to as
Places.
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Figure 3.6: Accuracy of localization as a function of retrieved candidate locations on two
benchmark datasets.

3.4.4 Localization using Cross-View Features

The AlexNet architecture [54] consists of five convolutional layers (interspersed with
dropout, pooling, and local response normalization layers) and three fully connected
layers (called fc6, fc7, and, the output layer, fc8). The only difference with Places is the
dimensionality of the output layer (205 versus 1,000 possible categorical labels).

Given the architecture and weights, Θg, of Places, we apply the cross-view training
approach described in Section 3.3 to train a model to predict the fc8 features. In practice,
we fix the network architecture and optimize the weights. For training, we use pairs of
ground-level images and the highest-resolution overhead images in our CVUSA dataset
(zoom level 18). We refer to this model as CVPlaces. Figure 3.6 shows the improvement in
localization of our single-scale model, with and without cross-view training, on Charleston
and San Francisco.

Initial experiments showed that initializing the solver with Θ0
a = Θg worked well,

therefore we use that strategy throughout. We reserve 1,000 matched pairs of images from
each benchmarks training set as a validation set for model selection. Our models are im-
plemented using the Caffe toolbox [47] and trained using stochastic gradient descent with
a Euclidean loss for parameter fitting to reflect (3.1).

3.4.5 Evaluating Multi-Scale Cross-View Training

Our multi-scale model architecture consists of three single-scale CVPlaces networks with
untied weights, each taking as input a different spatial resolution of overhead imagery. The
top feature layer from each individual network is concatenated and used as input to a final
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fully connected layer with a 205 dimensional output. The resulting model has approxi-
mately 180 million parameters. For training, we initialize each of the sub-networks with
the weights for our best single-scale network and randomly initialize the output layer. We
refer to our multi-scale model as MCVPlaces.

To evaluate MCVPlaces, we augmented San Francisco with additional multi-scale over-
head imagery (zoom levels 16 and 14). Figure 3.6 shows a comparison of our multi-scale
approach versus our single-scale approach and a recent method on San Francisco. The
features learned via multi-scale cross-view training significantly out-perform all others. In
terms of top 1% accuracy, we improve the state-of-the art by 6.4%, a percentage change of
32.32%.

3.5 Discussion

The evaluation suggests that the cross-view training procedure learns features that are ef-
fective for localization. In the remainder of this section, we explore this representation in
more depth.

3.5.1 Understanding Network Activations

To understand what the network is learning, we analyze the node-level activations for a
large set of images on the Places network and our CVPlaces network. We randomly sam-
pled 20,000 pairs of ground-level/overhead images from CVUSA and recorded the activa-
tions for each. Figure 3.7 shows a set of images that resulted in the maximum activation for
particular fc8 nodes of each network. We selected the fc8 nodes because they are the last
layer before the softmax output and are therefore semantically meaningful. The ground-
level images that result in high activations on the Places network are good exemplars of
their corresponding category. However, using the same network, high-activation overhead
images are often semantically incorrect. For example the “wheat field” image is actually a
forest and the “airport” image is a highway. When passed through our CVPlaces network,
the high-activation images are much more semantically plausible. These results highlight
that the cross-view training process is learning to recognize locations in overhead images
where particular scene categories are likely to be observed from a ground-level viewpoint.

3.5.2 Geospatial Visualization of Overhead Image Features

We visualize the geospatial distribution of high-level features extracted from the high-
resolution overhead reference imagery from the Charleston dataset [66]. The result is a
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wheat field arch airport apt. building cemetery lighthouse badlands
ground-level images on the Places network [146]

overhead images on the Places network [146]

overhead images on our CVPlaces network

Figure 3.7: Images that result in high activations for particular scene categories. (top) The
high-activation ground-level images are exemplars for the corresponding semantic class.
(middle) The high-activation overhead images for the network trained on ground-level im-
ages are, not surprisingly, less semantically correct. For example, in the “arch” category
the image may look like an arch, but is not a location you are likely to see an arch from the
ground. (bottom) After fine-tuning for the overhead domain, the high-activation images are
a better match to the respective categories.

coarse-resolution false-color image that summarizes the semantic information extracted by
a particular CNN from the overhead images. To support this, we computed the fc8 fea-
tures from two networks, Places and our CVPlaces. For visualization purposes, we choose
three high-level categories (urban, rural, and water-related) and assign a set of represen-
tative scene categories to each. The false-color image is generated as follows: for the red
channel, we compute the average activation for the set of categories defined as urban on
the overhead imagery under each pixel. The same procedure is applied for rural (green)
and water-related (blue). We then linearly scale the averaged activations to the range [0, 1].
The result is a false-color overhead image (Figure 3.8) with semantically meaningful col-
ors. For example, a bright red pixel identifies an urban area and a purple pixel is an urban
area near the water, etc. Our CVPlaces network results in a clearer distinction between
regions, highlighting the urban core of Charleston and distinguishing water regions from
rural. This demonstrates that the cross-view training procedure enables the CVPlaces net-
work to extract semantically meaningful features from overhead imagery. This is especially
interesting because the network was trained using the entire CVUSA dataset and was not
fine-tuned specifically for the Charleston area.
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Figure 3.8: (left) A false-color image generated by applying the Places network to
overhead imagery. In both images the colors are semantically meaningful (red=urban,
green=rural, blue=water-related). (right) The same as (left) but with our CVPlaces net-
work (trained on the entire USA dataset, with no Charleston-specific fine tuning).

3.5.3 Localization at Dramatically Different Spatial Scales

The quantitative evaluation shows that by using our CVPlaces network, we obtain state-of-
the-art localization performance at the scale of a major metropolitan area (approx. 100km

across). In this section, we explore whether CVPlaces might work at larger and smaller
spatial scales. We begin at the continental scale: given a ground-level query image from
CVUSA, we compute the feature distance between the Places fc8 feature vector of the
query image and CVPlaces fc8 feature vector of all overhead images in the dataset. Fig-
ure 3.9 shows qualitative results as a heatmap that represents the distance between the query
and corresponding overhead image. The black dot represents the ground truth location of
the query images. In the first example, our method clearly identifies the image as having
been captured in the desert southwest. The second example, of a suburban neighborhood,
results in a heatmap that highlights urban areas. The third example identifies the query
image as having been captured on a coast.

We also explore whether the proposed method can be used for localization at a much
smaller scale. Figure 3.10 shows examples where the method is able to distinguish between
locations a few decameters apart. To accomplish this, we implemented a system that takes
as input a query image and an initial location estimate. It samples a grid of nearby geo-
graphic locations and computes the distance between the Places fc8 feature vector of the
query image and the corresponding CVPlaces feature of the sub-window of the overhead
imagery. Note that sampling on the grid could be accelerated by computing it convolu-
tionally on the GPU. These results show that in some cases, such as the American football
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Figure 3.9: Localization examples at a continental scale. (left) A ground-level query image.
(right) A heatmap of the distance between the Places fc8 feature of the query image and
the corresponding CVPlaces feature of an overhead image at that location (red: more likely
location, blue: less likely location). The black circle marks the true location of the camera.

example, it can identify a football stadium given an image of players. In the other exam-
ples, the heatmaps reflect the inherent uncertainty of localization. The lake-shore example
is particularly interesting because even though the shore is not visible, the heatmap cor-
rectly reflects that the photographer is less likely to be standing in the middle of the lake
than on its shore.

3.6 Conclusion

We proposed a cross-view training approach, in which we learn to predict features extracted
from ground-level imagery from overhead imagery of the same location. We introduced a
massive dataset of such pairs and proposed single and multi-scale networks for extracting
overhead image features, obtaining state-of-the-art results for cross-view localization on
two benchmark datasets.

Our focus was learning the optimal parameters, Θa, for extracting features from over-
head imagery. We tried fixing the overhead parameters, Θa, using pre-existing networks,
and optimizing over Θg, but the performance was poor. We also attempted jointly optimiz-
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Figure 3.10: Examples of localization at finer spatial scales. (top) The ground-level query
image. (middle) An overhead image centered at the ground location. (bottom) An overlay
showing the distance between the ground-level image feature and the overhead image fea-
tures at each location, computed using a sliding window approach (red: more likely, blue:
less likely).

ing over Θa and Θg but the results did not improve over exclusively optimizing for Θa. We
suspect both of these results are because existing ground-level image feature extractors are
better suited for cross-view localization than overhead image feature extractors. However,
finding better initial values for Θa is an interesting area for future work.

When the ground-level query image was captured in a location that is distinctive from
above, such as an outdoor football stadium or an intersection with a unique pattern of
intersecting roads, it is possible to obtain a precise estimate of the geographic location
using the cross-view localization approach. However, many locations are not so distinctive.
Therefore, it is useful to consider the proposed approach as a pre-processing step to a more
expensive matching process. Such a matching process might be purely computational, as
with sparse keypoint matching, or may involve manual human search.

Copyright c© Scott Workman, 2018.
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Chapter 4

Understanding and Mapping Natural
Beauty

4.1 Introduction

Recent advances in learning with large-scale image collections have led to methods that go
beyond identifying objects and their interactions toward quantifying seemingly subjective
high-level properties of the scene. For example, Isola et al. [40] explore image memora-
bility, finding that memorability is a stable property of images that can be predicted based
on the image attributes and features. Other similar high-level image properties include
photographic style [110], virality [18], specificity [45], and humor [11]. Quantifying such
properties facilitates new applications in image understanding.

In this chapter we consider “scenicness”, or the natural beauty of outdoor scenes. De-
spite the popularity of the saying “beauty lies in the eye of the beholder,” research shows
that beauty is not purely subjective [57]. For example, consider the images in Figure 4.1;
mountainous landscapes captured from an elevated position are consistently rated as more
beautiful by humans than images of power transmission towers.

Understanding the perception of landscapes has been an active research area (see [151]
for a comprehensive review) with real-world importance. For example, McGranahan [75]
derives a natural amenities index and shows that rural population change is strongly related
to the attractiveness of a place to live, as well as an area’s popularity for retirement or
recreation. Seresinhe et al. [102] show that inhabitants of more beautiful environments
report better overall health. Runge et al. [97] characterize locations by their visual attributes
and describe a system for scenic route planning. Lu et al. [69] recover cues from millions
of geotagged photos to suggest customized travel routes.
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Figure 4.1: Most observers agree that images of mountains are more scenic than power
lines. Our work seeks to automatically quantify “scenicness” and demonstrate applications
in image understanding and mapping.

Recently, a number of algorithms have been developed to automatically interpret high-
level properties of images. Laffont et al. [55] introduce a set of transient scene attributes and
train regressors for estimating them in novel images. Lorenzo et al. [87] use a convolutional
neural network to estimate urban perception from a single image. Deza and Parikh [18]
study the phenomenon of image virality. Similarly, a significant amount of work has sought
to understand the relationship between images and their aesthetics [50, 71, 138]. Karayev
et al. [49] recognize photographic style. Su et al. [110] propose a method for scenic photo
quality assessment using hand-engineered features. Developed independently from our
work, Seresinhe et al. [101, 103] explore models for quantifying scenicness. Lu et al. [68]
apply deep learning to rate images as high or low aesthetic quality.

In this work, we start with a large-scale dataset containing hundreds of thousands of
images, individually rated by humans, to quantify and predict image scenicness. Our main
contributions are:

• an analysis of outdoor images to identify semantic concepts correlated with scenic-
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(b) Non-Scenic

Figure 4.2: Example images (and human-provided scenicness ratings) from the Sceni-
cOrNot (SoN) dataset: (a) “scenic” images (average rating above 7.0) and (b) “non-scenic”
images (average rating below 3.0).

ness;

• a method for estimating the scenicness of an image which accounts for variance in
the ratings and human perception of scenicness;

• a new dataset of ground-level and overhead images with crowdsourced scenicness
scores; and

• a novel cross-view mapping approach, which incorporates both ground-level and
overhead imagery to address the spatial sparsity of ground-level images, to provide
country-scale predictions of scenicness.

4.2 Exploring Image Scenicness

Our work builds on a publicly-available crowd-sourced database collected as part of an
online game, ScenicOrNot,1 which contains images captured throughout Great Britain. As
part of the game, users are presented a series of images from around the island of Great
Britain and invited to rate them according to their scenicness, or natural beauty, on a scale
from 1-10. From a user standpoint, in addition to being exposed to the diverse environments
of England, Scotland and Wales, the purpose of the game is to compare aesthetic judgments
against those of other users.

We apply our work to a database of 185,548 images and associated natural beauty rating
histograms. Each image in the dataset was rated at least five times. We refer to this set of
images as the ScenicOrNot (SoN) dataset. In addition to retaining the rating distribution
and average rating, we partition the set of images into “scenic” (average rating above 7.0)

1ScenicOrNot (http://scenicornot.datasciencelab.co.uk/) is built on top of Geo-
graph (http://www.geograph.org.uk/), an online community and photo-sharing website.
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Figure 4.3: The word cloud depicts the relative frequency of title and caption terms found
in scenic images from the SoN dataset.

and “non-scenic” (average rating below 3.0) subgroups. Figure 4.2 shows sample images
from the dataset. In the remainder of this section, we explore image properties that may
be associated with scenicness, including: text annotations, color statistics, and semantic
image attributes.

4.2.1 Image Captions

Like most images hosted on image sharing sites, the SoN images have associated metadata,
including a title and caption. For example, the image in Figure 4.1 (top, left) is titled From

Troutbeck Tongue and has the following caption: “Looking over the cairn down Trout
Beck. Windermere and the sea in the distance”. For all of the images in the SoN dataset,
we analyzed the title and captions to explore whether these associated text annotations are
correlated with scenicness.

Using the scenic and non-scenic subsets, we compute the relative term frequency for
each of the extracted words. Figure 4.3 shows a word cloud of the most frequent 100
extracted terms from scenic images, where the size of the word represents the relative fre-
quency. While some of the terms (e.g., “ridge”, “cliffs”, “summit”) may universally corre-
late with scenicness, other terms, such as “loch”, “na”, and “beinn” reflect the fact the data
originates from Great Britain. Conversely, example terms that are negatively correlated
with scenicness include “road”, “lane”, “house”, and “railway”.
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less scenic more scenic

Figure 4.4: Distribution of color with respect to the average scenicness rating of the SoN
image set.

4.2.2 Color Distributions

The images in Figure 4.2 and terms in Figure 4.3 suggest that images with blue skies, green
fields, water, and other natural features tend to be rated as more scenic. For this analysis,
we computed the distribution of quantized color values, using the approach of Van De
Weijer et al. [119], as a function of the average scenicness rating of the SoN image set.
Figure 4.4 shows the distribution, where we see blue overrepresented in scenic images and,
conversely, black and gray overrepresented in non-scenic images.

4.2.3 Scene Semantics

For each image, we compute SUN attributes [84], a set of 102 discriminative scene at-
tributes spanning several types (e.g., function, materials). Figure 4.5 shows an occurrence
matrix for a subset of attributes correlated with image scenicness. Attributes such as “as-
phalt”, “man-made”, and “transporting things or people” occur often in less scenic images,
suggesting that urban environments are more typical of images with low scenicness. In
contrast, attributes such as “ocean”, “climbing”, and “sailing/boating” occur more often in
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Figure 4.5: Distribution of the frequency of SUN attributes [84] in “scenic” versus “not
scenic” images. Warm colors indicate higher frequency.

the most scenic images.
Similarly, we compared scenicness to the scene categorizations generated by the

Places [146] convolutional neural network. Of the 205 Places scene classes (e.g., “airplane
cabin”, “hotel room”, “shed”), 135 describe outdoor categories. We aggregate the outdoor
classes into seven higher-level scene categories (similar to Runge et al. [97]), such as
“buildings and roads”, “nature and woods”, and “hills and mountains”. Each image
is classified using Places into one of these high-level categories. Figure 4.6 shows the
frequency of each category as a function of the average user-provided rating of SoN
images. The trend follows previously observed patterns; on the whole, images containing
natural features, such as hills, mountains, and water, are rated as more scenic than images
containing buildings, roads, and other man-made constructs.

4.2.4 Summary

This analysis shows that scenicness is related to both low-level image characteristics, such
as color, and semantic properties, such as extracted attributes and scene categories. This
suggests that it is possible to estimate scenicness from images. In the following section,
we propose a method for directly estimating image scenicness from raw pixel values.
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Figure 4.6: Distribution of high-level categories for the images in the SoN dataset.

4.3 Predicting Image Scenicness

We use a deep convolutional neural network (CNN) to address the task of automatically
estimating the scenicness of an image. Following other approaches (e.g., [126, 132]), we
partition the output space and treat this prediction as a discrete labeling task where the out-
put layer corresponds to the integer ratings (i.e., 1, 2, . . . , 10) of scenicness. We represent
our CNN as a function, G(I; Θg), where I is an image and the output is a probability dis-
tribution over the 10 scenicness levels. We consider multiple loss functions during training
to best capture the distribution in human ratings of scenicness for a given image.

The baseline approach follows recent work (e.g., [136]), which trains a model to predict
a single value. For this variant, each image is associated with the label corresponding to the
mean human rating, rounded to the nearest integer value, r̄. Training involves minimizing
the typical cross-entropy loss:

E = − 1

N

N∑
n=1

log(G(In; Θg)(r̄n)), (4.1)

where N is the number of training examples.
The baseline approach assumes a single underlying value for scenicness. However, as

shown in Figure 4.2, for many images, there may be high variability in the ratings. In these
cases, the mean scenicness may not serve as a representative value. So, instead of directly
predicting the mean scenicness, we train the model to predict the human rating distribution
for a particular image. For this variant, we treat the normalized human ratings as a target
distribution and train the model to predict this distribution directly, by minimizing the
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cross-entropy loss:

E = − 1

N

N∑
n=1

10∑
r=1

pnr log(G(In; Θg)(r)), (4.2)

where pnr is the proportion of r ratings for image n.
However, the previous formulation assumes a large number of ratings so that pn ap-

proaches the true distribution. In our case, this assumption does not hold. As an alternative
to predicting the mean scenicness or the empirical scenicness distribution, we model the set
of ratings for an image as a sample from a multinomial distribution. Each training example
is associated with a set of (potentially noisy) labels {(I1, {v1i}), . . . , (IN , {vNi})}, where
{vji} is the set of ratings for image Ij . This results in the following loss:

E = − 1

N

N∑
n=1

Vn∑
i=1

pni log(G(In; Θg)(vni)), (4.3)

where Vn is the total number of ratings for image n.

4.3.1 Comparison with Human Ratings

We evaluate our scenicness predictions using the SoN dataset. We reserved 1,413 images
that have at least ten ratings as test cases for evaluation, with the remaining data used
for training and validation. For predicting scenicness, we modify the GoogleNet architec-
ture [112] with weights initialized from the Places network [146]. We selected this CNN
because it had been trained for the related task of outdoor scene classification; however, our
methods could be applied to other related architectures or trained from scratch with suffi-
cient data. Our implementation uses the Caffe [47] deep learning toolbox. For training, we
randomly initialize the last layer weights and optimize parameters using stochastic gradient
descent with a base learning rate of 10−4 and a mini-batch size of 40 images. Roughly 10%
of the training data is reserved for validation.

We refer to the three models as: (1) AVERAGE, the baseline approach that predicts
the mean scenicness (Equation 4.1); (2) DISTRIBUTION, the model that minimizes
cross-entropy loss to the normalized distribution of human ratings (Equation 4.2); and
(3) MULTINOMIAL, which maximizes the multinomial log-likelihood (Equation 4.3).
We compare performance on two tasks: (1) predicting the average human rating and (2)
predicting the distribution of ratings for a given image.

The output of each network is a posterior probability for each integer rating for a given
input image. To evaluate the average user predictions, we consider the order of the predic-
tions, ranked by posterior probability and use the information retrieval metric, Normalized
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Table 4.1: Quantitative results comparing models with different loss functions. For each
metric, higher is better.

Loss Metric
nDCG K-S

AVERAGE .9780 14.8%
DISTRIBUTION .9678 50.0%
MULTINOMIAL .9745 58.4%

Discounted Cumulative Gain (nDCG), which penalizes “out of order” posterior probabili-
ties, given the ground-truth rating. The second column of Table 4.1 shows the nDCG scores
for each of the three models. Overall, the models trained using different loss functions per-
formed similarly well under this evaluation metric.

For the task of predicting the distribution of ratings for a given image, the performance
of the models diverged. We take a hypothesis testing approach and consider whether or not
the set of human ratings could be drawn from the distribution represented by the output
probabilities of the CNN. For this, we applied the one-sample Kolmogorov-Smirnov (K-S)

test with a non-parametric distribution and computed the proportion of testing images for
which the human ratings come from the posterior distribution at the 5% significance level.
The last column of Table 4.1 shows the percentage of testing images that matched the
predicted distribution. The models trained using distribution of ratings, DISTRIBUTION

and MULTINOMIAL, significantly outperform the model trained on average rating, with
MULTINOMIAL showing the best performance.

Figure 4.7 visualizes these results qualitatively. Several example images are shown
alongside the distribution of human ratings (green) and predictions from the three models.
In general, the results follow the quantitative analysis. The MULTINOMIAL method better
captures human uncertainty as compared to the other methods. For example, in Figure 4.7
(row 1), the baseline approach, AVERAGE, provides a much higher posterior probability
for a rating of 2 than the distribution of humans ratings. Comparatively, MULTINOMIAL

is more consistent with human ratings and closer to the average user predictions. For the
remaining experiments, the MULTINOMIAL model is used unless otherwise specified.

4.3.2 Receptive Fields of Natural Beauty

For additional insight into our scenicness predictions, following Zhou et al. [147], we ap-
ply receptive field analysis to highlight the regions of the image that are most salient in
generating the output distribution. Briefly, the approach computes the differences in out-
put predictions for a given image with a small (i.e., 7 × 7) mask applied. Using a sliding
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Figure 4.7: Example images alongside the distribution of human ratings (green), and the
outputs of AVERAGE (blue), DISTRIBUTION (black), and MULTINOMIAL (magenta). The
red × corresponds to the mean rating and the magenta ◦ the weighted average of the
MULTINOMIAL prediction.
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window approach, the prediction differences (compared to the unmasked image) are com-
puted on a grid across the image. A large difference signifies the masked region plays a
significant role in the output prediction. This process leads to a saliency map over the input
image. For visualization purposes, we represent the map as a binary mask (thresholded at
0.6). Figure 4.8 shows several examples of this analysis. Each pair of images shows the in-
put and the image regions with the most contribution to the (high or low) scenicness score.
In most cases, the receptive fields match the intuition and semantic analysis of scenicness.
Regions containing water, trees, and horizons contribute to scenicness, while man-made
objects, such as buildings and cars, contribute to non-scenicness.

4.3.3 Scenicness-Aware Image Cropping

The previous experiment shows that components within a given image contribute differ-
ently to the overall scenicness. For this experiment, we solve for the image crop that
maximizes scenicness. This approach follows the style of previous methods for content-
aware image processing (e.g., seam carving for image resizing [3]). We used constrained
Bayesian optimization [27] to solve for the position and size of the maximally scenic image
crop, where scenicness is measured as the weighted average prediction from the MULTI-
NOMIAL network. Figure 4.9 shows representative examples. In some cases, cropping
improved the scenicness scores greatly. For example, in the top image in Figure 4.9, crop-
ping out the vehicles increased the predicted scenicness from 5.0 to 7.3.

4.4 Mapping Image Scenicness

The previous sections considered scenicness as a property of an image. Here, we consider
scenicness as a property of geographic locations and propose a novel approach for esti-
mating scenicness over a large spatial region. We extend our approach for single-image
estimation to incorporate overhead imagery. The result is a dense, high-resolution map
that reflects the scenicness for every location in a region of interest. Such a map could,
for example, be used to provide driving directions optimized for “sight seeing” [90, 97] or
suggest places to go for a walk [88].

We consider geotagged images as noisy samples of the underlying geospatial scenic-
ness function. The challenge is that ground-level imagery is sparsely distributed, espe-
cially away from major urban areas and tourist attractions. This means that methods which
estimate maps using only ground-level imagery [2, 87, 136] typically generate either low-
resolution or noisy maps.
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(a) Scenic

(b) Non-Scenic

Figure 4.8: Network receptive field analysis. Given an input image (top), the output mask
(bottom) highlights the region(s) that most significantly impact the maximal label assigned
by our network.
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Figure 4.9: For each image, the green bounding box shows the image crop that maximizes
scenicness. The predicted scenicness scores for both the entire image and the cropped
region are shown in the inset.
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Figure 4.10: Examples of the co-located ground-level (top) and overhead (bottom) image
pairs contained in the Cross-View ScenicOrNot (CVSoN) dataset.

To deal with the problem of interpolating sparse examples over large spatial regions,
we apply a cross-view training and mapping approach. Cross-view methods [67, 129, 141]
incorporate both ground-level and overhead viewpoints and take advantage of the fact that,
while ground-level images are spatially sparse, overhead imagery is available at a high-
resolution in most locations. Jointly reasoning about ground-level and overhead imagery
has become popular in recent years. Luo et al. [70] use overhead imagery to perform
better event recognition by fusing complementary views. Lin et al. [66, 67] introduce the
problem of cross-view geolocalization, where an overhead image reference database is
used to support ground-level image localization by learning a feature mapping between the
two viewpoints. Workman et al. [127, 129] study the geo-dependence of image features
and propose a cross-view training approach.

To support these efforts, we extend the ScenicOrNot (SoN) dataset to incorporate over-
head images. Specifically, for each geotagged, ground-level SoN image, we obtained a
256 × 256 orthorectified overhead image centered at that location from Bing Maps (zoom
level 16, which is ∼2.4 meters/pixel). Figure 4.10 shows co-located pairs of ground-level
and overhead images from the Cross-View ScenicOrNot (CVSoN) dataset.

4.4.1 Cross-View Mapping

To predict the scenicness of an overhead image even though labeled overhead images are
not available, we apply a cross-view training strategy; instead of predicting the scenicness
of the overhead image, we predict the scenicness of a ground-level image captured at the
same location. We use the same network architecture and training methods as with the
ground-level network, with two changes: (1) overhead (instead of ground-level) images are
used as input and (2) the weights are initialized with those learned from the ground-level
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Figure 4.11: The architecture for our hybrid approach to cross-view mapping.

network. Similar to our ground-level network, after training, the output of this overhead
image network is a distribution over scenicness ratings.

While using overhead images as input may address the issue of sparse spatial coverage
of ground-level imagery, an overhead-only network may miss, for example, scenic views
hidden amongst dense urban areas. To address this issue, we introduce a novel variant to
the cross-view approach for combining ground-level and overhead imagery to estimate the
scenicness of a query location. This is similar to our framework for estimating geospatial
functions [131].

Figure 4.11 shows an overview of our hybrid cross-view approach. For a given query
location, q, consider the co-located overhead image, set of the k closest ground-level im-
ages, and the distances of the ground-level images to the query location, {δ1, δ2, . . . , δk}.
For the images, we can compute scenicness features using the existing ground and over-
head networks. For the hybrid approach, we learn and predict scenicness from the fused
features (overhead image features, ground-level features, weighted distances) using a small
feed-forward network, with three hidden layers containing 100, 50, and 25 neurons, respec-
tively. The activation function on the internal nodes is the hyperbolic tangent sigmoid. The
network weights are regularized using an L2 loss with a weight of 0.5. The output is the
predicted distribution of ratings for a ground-level image taken at the input location. We
refer to this as the Cross-View Hybrid (CVH) network.
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Table 4.2: Comparison of mapping strategies.

Method 1NN LWA CVH
AUC 64.38% 66.86% 68.51%

4.4.2 Mapping the Scenicness of Great Britain

To evaluate CVH, the CVSoN dataset is divided as before, with the same 1,413 ground-
level images (with at least 10 ratings) held out for testing. For CVH, the test input includes
the co-located overhead image. We compare against two baseline methods for constructing
dense maps of visual properties:

• 1NN: return the prediction from the ground-level image closest to the query location;
and

• LWA: return the locally weighted average prediction of neighboring ground-level im-
ages with a Gaussian kernel (σ = 0.01 degrees).

To compare our methods, we formulate a binary classification task to determine if a given
test image is above or below a scenicness rating of 7. Table 4.2 shows the results for each
method as the area under the curve (AUC) of the ROC curve computed from the output
distributions. The results show that including orthographic overhead imagery improves the
resulting predictions.

These results are supported qualitatively in Figure 4.12, which shows scenicness maps
for several regions around Great Britain. We observe that by including overhead imagery
we are able to construct a significantly more accurate map than purely interpolating scenic-
ness estimates obtained from ground-level images alone. The maps created using only
ground-level images (e.g., 1NN, LWA) are susceptible to both underprediction (e.g., no
nearby scenic ground-level images) and overprediction (e.g., a single nearby scenic image
with a narrow field of view). On the other hand, the cross-view approach can be more ro-
bust against these types of mispredictions due to effectively averaging across many images
(by marginalizing through the overhead imagery), not just those in the nearby area.

4.5 Conclusion

We explored the concept of natural beauty as it pertains to outdoor imagery. Using a dataset
containing hundreds of thousands of ground-level images rated by humans, we showed it
is possible to quantify scenicness, from both ground-level and overhead viewpoints. To
our knowledge, this is the first time a combination of overhead and geotagged ground-level
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ROI 1NN LWA CVH

Figure 4.12: Scenicness maps. The first column shows an overhead image where dots cor-
respond to geotagged ground-level imagery, colored by average scenicness rating (warmer
colors correspond to more scenic images). The remaining columns show false-color images
that reflect the average scenicness predicted by each method.
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imagery has been used to map the scenicness of a region. The resulting maps are higher-
resolution than those constructed by previous approaches and can be quickly computed.
Such methods have significant practical importance to many areas, including: tourism,
transportation routing, and environmental monitoring.

Copyright c© Scott Workman, 2018.

59



www.manaraa.com

Chapter 5

A Unified Model for Near and Remote
Sensing

5.1 Introduction

From predicting the weather to planning the future of our cities to recovering from natu-
ral disasters, accurately monitoring widespread areas of the Earth’s surface is essential to
many scientific fields and to society in general. These observations have traditionally been
collected through remote sensing from satellites, aerial imaging, and distributed observing
stations and sensors. These approaches can observe certain properties like land cover and
land use accurately and at a high resolution, but unfortunately, not everything can be seen
from overhead imagery. For example, Wang et al. [123] evaluate approaches for urban zon-
ing and building height estimation from overhead imagery, and conclude that urban zoning
segmentation “is an extremely hard task from aerial views,” that building height estimation
is “either too hard, or more sophisticated methods are needed,” and that “utilizing ground
imagery seems a logical first step.”

More recently, the explosive popularity of geotagged social media has raised the possi-
bility of using online user-generated content as a source of geospatial information, some-
times called image-driven mapping or proximate sensing. For example, online images from
social network and photo sharing websites have been used to estimate land cover for large
geographic regions [60, 150], to observe the state of the natural world by recreating maps
of snowfall [122], and to quantify perception of urban environments [21]. Despite differing
applications, these works all wish to estimate some unobservable geospatial function, and
view each social media artifact (e.g., geotagged ground-level image) as an observation of
this function at a particular geographic location.
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Figure 5.1: We use overhead imagery and geotagged ground-level imagery as input to an
end-to-end deep network that estimates the values of a geospatial function by performing
fine-grained pixel-level labeling on the overhead image.

The typical approach [2,136] is to (1) collect a large number of samples, (2) use an au-
tomated approach to estimate the value of the geospatial function for each sample, and (3)
use some form of locally weighted averaging to interpolate the sparse samples into a dense,
coherent estimate of the underlying geospatial function. This estimation is complicated by
the fact that observations are noisy; state-of-the-art recognition algorithms are imperfect,
some images are inherently confusing or ambiguous, and the observations are distributed
sparsely and non-uniformly. This means that in order to estimate geospatial functions with
reasonable accuracy, most techniques use a kernel with a large bandwidth to smooth out the
noise, which yields coarse, low-resolution outputs. Despite this limitation, the proximate
sensing approach can work well if ground-level imagery is plentiful, the property is easily
estimated from the imagery, and the geospatial function is smoothly varying.
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Figure 5.2: What type of building is shown in the overhead view (left)? Identifying and
mapping building function is a challenging task that becomes considerably easier when
taking into context nearby ground-level imagery (right).

In this chapter, we propose a novel neural network architecture that combines the
strengths of these two approaches (Figure 5.1). Our approach uses deep convolutional
neural networks (CNNs) to extract features from both overhead and ground-level imagery.
For the ground-level images, we use kernel regression and density estimation to convert
the sparsely distributed feature samples into a dense feature map spatially consistent with
the overhead image. This differs from the proximate sensing approach, which uses ker-
nel regression to directly estimate the geospatial function. Then, we fuse the ground-level
feature map with a hidden layer of the overhead image CNN. To extend our methods to
pixel-level labeling, we extract multi-scale features in the form of a hypercolumn and use a
small neural network to estimate the geospatial function of interest. A novel element of our
approach is the use of a spatially varying kernel that depends on features extracted from
the overhead imagery.

Our network is trained end-to-end, so that all free parameters, including kernel band-
widths and low-level image features, are automatically tuned to minimize our loss func-
tion. In addition, our architecture is very general because it could be used with most
state-of-the-art CNNs, and could be easily adapted to use any sparsely distributed me-
dia, including geotagged audio, video, and text (e.g., tweets). We evaluate our approach
with a large real-world dataset, consisting of most of two major boroughs of New York
City (Brooklyn and Queens), on estimating three challenging labels (building age, building
function, and land use), all of which are notoriously challenging tasks in remote sensing
(Figure 5.2). The results show that our technique for fusing overhead and ground-level
imagery is more accurate than either the remote or proximate sensing approach alone, and
that our automatically-estimated spatially-varying kernel improves accuracy compared to
one that is uniform.
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5.2 Related Work

Many recent studies have explored analyzing large-scale image collections as a means of
characterizing properties of the physical world. A number of works have tried to estimate
properties of weather from geotagged and time-stamped ground-level imagery. For exam-
ple, Murdock et al. [79, 80] and Jacobs et al. [44] use webcams to infer cloud cover maps,
Li et al. [63] use ground-level photos to estimate smog conditions, Glasner et al. [31] es-
timate temperature, Zhou et al. [149] and Lee et al. [59] estimate demographic properties,
Fedorov et al. [24, 25] and Wang et al. [122] infer snow cover, Khosla et al. [51] and Porzi
et al. [87] measure perceived crime levels, Leung and Newsam [60] estimate land use, and
so on.

Many of these works’ contribution is exploring a novel application, as opposed to
proposing novel techniques. They mostly follow a very similar recipe in which standard
recognition techniques are applied to individual images, and then spatial smoothing and
other noise reduction techniques are used to create an estimate of the geospatial function
across the world. Meanwhile, remote sensing has long used computer vision to estimate
properties of the Earth from satellite images. Of course, overhead imaging is quite different
from ground-level imaging, and so remote sensing techniques have largely been developed
independently and in task-specific ways [95].

We know of relatively little work that has proposed general frameworks for estimating
geospatial functions from imagery, or in integrating visual evidence from both ground-level
and overhead image viewpoints. Tang et al. [114] show how location context can improve
image classification, but they do not use overhead imagery and their goal is not to estimate
geospatial functions. Luo et al. [70] use overhead imagery to give context for event recog-
nition in ground-level photos by combining hand-crafted features for each modality. Xie
et al. [137] use transfer learning to extract socioeconomic indicators from overhead im-
agery. Most similar is our work on mapping the subjective attribute of natural beauty [130]
where we propose to use a multilayer perceptron to combine high-level semantic features.
Recent work in image geolocalization has matched ground-level photos taken at unknown
locations to georegistered overhead views [66, 67, 127, 129], but this goal is significantly
different from inferring geospatial functions of the world.

Several recent works jointly reason about co-located ground-level and overhead image
pairs. Máttyus et al. [73] perform joint inference over both monocular aerial and ground-
level images from a stereo camera for fine-grained road segmentation, while Wegner et
al. [124] detect and classify trees using features extracted from overhead and ground-level
images. Ghouaiel and Lefèvre [29] transform ground-level panoramas to an overhead per-
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Figure 5.3: An overview of our network architecture.

spective for change detection. Zhai et al. [141] propose a transformation to extract mean-
ingful features from overhead imagery.

In contrast with the above work, our goal is to produce a general framework for learning
that can estimate any given geospatial function of the world. We integrate data from both
ground-level imagery, which often contains visual evidence that is not visible from the air,
and overhead imagery, which is typically much denser. We demonstrate how our models
learn in an end-to-end way, avoiding the need for task-specific or hand-engineered features.

5.3 Problem Statement

We address the problem of estimating a spatially varying property of the physical world,
which we model as an unobservable mathematical function that maps latitude-longitude
coordinates to possible values of the property, F : R2 → Y . The range Y of this function
depends on the attribute to be estimated, and might be categorical (e.g., a discrete set of
elements for land use classification — golf course, residential, agricultural, etc.) or con-
tinuous (e.g., population density). We wish to estimate this function based on the available
observable evidence, including data sampled both densely (such as overhead imagery) and
sparsely (such as geotagged ground-level images). From a probabilistic perspective, we can
think of our task as learning a conditional probability distribution P (F (l) = y|Sl,G(l)),
where l is a latitude-longitude coordinate, Sl is an overhead image centered at that location,
and G(l) is a set of nearby ground-level images.
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5.4 Network Architecture

We propose a novel convolutional neural network (CNN) that fuses high-resolution over-
head imagery and nearby ground-level imagery to estimate the value of a geospatial func-
tion at a target location. While we focus on images, our overall architecture could be used
with many sources of dense and sparse data. Our network can be trained in an end-to-end
manner, which enables it to learn to optimally extract features from both the dense and
sparse data sources.

5.4.1 Architecture Overview

The overall architecture of our network (Figure 5.3) consists of three main components, the
details of which we describe in the next several sections: (1) constructing a spatially dense
feature map using features extracted from the ground-level images (Section 5.4.2), (2) ex-
tracting features from the overhead image, incorporating the ground-level image feature
map (Section 5.4.3), and (3) predicting the geospatial function value based on a hypercol-
umn of features (Section 5.4.4). A novel element of our proposed approach is the use of
an adaptive, spatially varying interpolation method for constructing the ground-level image
feature map based on features extracted from the overhead image (Section 5.4.5).

5.4.2 Ground-Level Feature Map Construction

The goal of this component is to convert a sparsely sampled set of ground-level images
into a dense feature map. For a given geographic location l, let G(l) = {(Gi, li)} be a set
of N elements corresponding to the closest ground-level images, where each (Gi, li) is an
image and its respective geographic location. We use a CNN to extract features, fg(Gi),
from each image and interpolate using Nadaraya–Watson kernel regression,

fG(l) =

∑
wifg(Gi)∑

wi

, (5.1)

where wi = exp(−d(l, li; Σ)2) is a Gaussian kernel function where a diagonal covariance
matrix Σ controls the kernel bandwidth and d(l, li; Σ) is the Mahalanobis distance from l

to li. We perform this interpolation for every pixel location in the overhead image. The
result is a feature map of size H×W ×m, where H and W are the height and width of the
overhead image in pixels, and m is the output dimensionality of our ground-level image
CNN.

The diagonal elements of the covariance matrix are represented by a pair of trainable
weights, which pass through a softplus function (i.e., f(x) = ln(1 + ex)) to ensure they are

65



www.manaraa.com

positive. Here, the value of Σ does not depend on geographic location, a strategy we call
uniform. In Section 5.4.5, we propose an approach in which Σ is spatially varying.

In our experiments, the ground-level images, G(l), are actually geo-oriented street-
level panoramas. To form a feature representation for each panorama, Gi, we first extract
perspective images in the cardinal directions, resulting in four ground-level images per
location. We replicate the ground-level image CNN, fg(Gi), four times, feed each image
through separately, and concatenate the individual outputs. We then add a final 1 × 1

convolution to reduce the feature dimensionality. For our experiments, we use the VGG-
16 architecture [106], initialized with weights for Place categorization [148] (m = 205,
layer name fc8). The result is an 820 dimensional feature vector for each location, which
is further reduced to 50 dimensions.

It is possible that the nearest ground-level image may be far away, which could lead
to later processing stages incorrectly interpreting the feature map. To overcome this, we
concatenate a kernel density estimate, using the kernel defined in equation (5.1), of the
ground-level image locations to the ground-level image feature map. The result is an H ×
W ×51 feature map that captures appearance and distributional information of the ground-
level images.

5.4.3 Overhead Feature Map Construction

This section describes the CNN we use to extract features from the overhead image and
how we integrate the ground-level feature map. The CNN is based on the VGG-16 ar-
chitecture [106], which has 13 convolutional layers, each using 3 × 3 convolutions, and
three fully connected layers. We only use the convolutional layers, typically referred to
as conv-{11−2, 21−2, 31−3, 41−3, 51−3}. In addition, we reduce the dimensionality of the
feature maps that are output by each layer. These layers have output dimensionality of
{32, 64, 128, 256, 512} channels, respectively. Each intermediate layer uses a leaky ReLU
activation function (α = 0.2).

To fuse the ground-level feature map with the overhead imagery, we apply average
pooling with a kernel size of 6 × 6 and a stride of 2. Given an input overhead image with
H = W = 256, this reduces the ground-level feature map to 32 × 32 × 51. We then con-
catenate it, in the channels dimension, with the overhead image feature map at the seventh
convolutional layer, 33. The input to convolutional layer 41 is then 32 × 32 × 179. We
experimented with including the ground-level feature map earlier and later in the network
and found this to be a good tradeoff between computational cost and expressiveness.

66



www.manaraa.com

5.4.4 Geospatial Function Prediction

Given an overhead image, Sl, we use the ground-level and overhead feature maps defined
above as input to the final component of our system to estimate the value of the geospa-
tial function, F (l(p)) ∈ 1 . . . K, where l(p) is the location of a pixel p. This pixel might
be the center of the image for the image classification setting or any arbitrary pixel in the
pixel-level labeling setting. To accomplish this we adapt ideas from the PixelNet architec-
ture [6], due to its strong performance and ability to train using sparse inputs. However, our
approach for incorporating sparsely distributed inputs could be adapted to other semantic
labeling architectures.

We first resize each feature map to be H × W using bilinear interpolation. We then
extract a hypercolumn [33] consisting of a set of features centered around p, hp(S) =

[c1(S, p), c2(S, p), . . . , ...cM(S, p)], where ci is the feature map of the i-th layer. For this
work, we extract hypercolumn features from conv-{12, 22, 33, 43, 53} and the ground-level
feature map. The resulting hypercolumn feature has length 1,043. Note that resizing all
intermediate feature maps to be the size of the image is quite memory intensive. Follow-
ing Bansal et al. [6], we subsample pixels during training to increase the number (and
therefore diversity) of images per mini-batch. At testing time, we can either compute the
hypercolumn for all pixels to create a dense semantic labeling or a subset to label particular
locations.

This hypercolumn feature is then passed to a small multilayer perceptron (MLP) that
provides the estimate of the geospatial function. The MLP has three layers of size 512,
512, and K (the task dependent number of outputs). Each intermediate layer uses a leaky
ReLU activation function.

5.4.5 Adaptive Kernel Bandwidth Estimation

In addition to the uniform kernel described above for forming the ground-level image fea-
ture map (Section 5.4.2), we propose an adaptive strategy that predicts the optimal kernel
bandwidth parameters for each location in the feature map. We estimate these bandwidth
parameters using a CNN applied to the overhead image. This network shares the first three
groups of convolutional layers, conv-{11, . . . , 33}, with the overhead image CNN defined
in Section 5.4.3. The output of these convolutions is passed to a sequence of three convo-
lutional transpose layers, each with filter size 3 × 3 and a stride of 2. These layers have
output dimensionality of 32, 16, and 2, respectively. The final layer has an output size
of H ×W × 2, which represents the diagonal entries of the kernel bandwidth matrix, Σ,
for each pixel location. Similar to the uniform approach, we apply a softplus activation
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on the output (initialized with a small constant bias) to ensure positive kernel bandwidth.
When using the adaptive strategy, these bandwidth parameters are used to construct the
ground-level feature map (H ×W × 51).

5.5 Experiments

We evaluated the performance of our approach on a challenging real-world dataset, which
includes overhead imagery, ground-level imagery, and several fine-grained pixel-level la-
bels. We proposed two variants of our approach: unified (uniform), which uses a single ker-
nel bandwidth for the entire region, and unified (adaptive), which uses a location-dependent
kernel that is conditioned on the overhead image.

5.5.1 Baseline Methods

In order to evaluate the proposed macro-architecture, we use several baseline methods that
share many low-level components with our proposed methods.

• random represents random sampling from the prior distribution of the training
dataset.

• remote represents the traditional remote sensing approach, in which only overhead
imagery is used. We use the unified (uniform) architecture, but do not incorporate
the ground-level feature map in the overhead image CNN or the hypercolumn.

• proximate represents the proximate sensing approach in which only ground-level im-
agery is used. We start from the unified (uniform) architecture but only include the
ground-level image feature map (minus the kernel density estimate) in the hypercol-
umn.

• grid is similar to the proximate method. Starting from unified (uniform), we omit
all layers from the overhead image CNN prior to concatenating in the ground-level
feature map from the hypercolumn. The motivation for this method is that the addi-
tional convolutional layers are able to capture spatial patterns which the final MLP
cannot, because it operates on individual hypercolumns.

5.5.2 Implementation Details

All methods were implemented using Google’s TensorFlow framework [1] and optimized
using Adam [52] with default training parameters, except for an initial learning rate of 10−3
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Figure 5.4: Sample overhead imagery and nearby street-level panoramas included in the
Brooklyn and Queens dataset.

(decreasing by 0.5 every 7,500 mini-batches) and weight decay of 5× 10−4. During train-
ing, we randomly sampled 2,000 pixels per image per mini-batch. The ground-level CNNs
have shared weights. All other network weights were randomly initialized and allowed
to vary freely. We applied batch normalization [38] (decay = 0.99) in all convolutional
and fully connected layers (except for output layers). For our experiments, we minimize
a cross-entropy loss function and consider the nearest 20 street-level panoramas. Each
network was trained for 25 epochs with a batch size of 32 on an NVIDIA Tesla P100.

5.5.3 Brooklyn and Queens Dataset

We introduce a new dataset containing ground-level and overhead images from Brooklyn
and Queens, two boroughs of New York City (Figure 5.4). It consists of non-overlapping
overhead images downloaded from Bing Maps (zoom level 19, approximately 30cm per
pixel) and street-level panoramas from Google Street View. From Brooklyn, we collected
imagery for the entirety of King’s County. This resulted in 73,921 overhead images and
139,327 panoramas. A significant number (30,316) of the overhead images are over wa-
ter; we discard these and only consider those which contain buildings. We hold out 4,361
overhead images for testing. For Queens, we selected a held out region solely for evalua-
tion and used the same process to collect imagery. This resulted in a dataset with 10,044
overhead images and 38,603 panoramas.

Using data made publicly available by NYC Open Data,1 we constructed a per-pixel
labeling of each overhead image for the following set of labels.

Building Function. We used 206 building classes, as outlined by the New York City De-
partment of City Planning (NYCDCP) in the Primary Land Use Tax Lot Output (PLUTO)
dataset, to categorize each building in a given overhead image. PLUTO contains detailed
geographic data at the tax lot level (property boundary) for every piece of land in New York
City. Example labels include: Multi-Story Department Stores, Funeral Home, and Church.

1https://data.cityofnewyork.us/
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To this set we add two classes, background (non-building, such as roads and water) and
unknown, as there are several thousand unlabeled tax lots. To form our final labeling, we
intersected the tax lot data with building footprints obtained from the NYC Planimetric
Database. For reference, there are approximately 331,000 buildings in Brooklyn.

Land Use. From PLUTO, we generated a per-pixel label image with each contained tax
lot labeled according to its primary land use category. The land use categories were spec-
ified by the New York City Department of City Planning. In total, there are 11 land use
categories. Example land use categories include: One and Two Family Buildings, Com-
mercial and Office Buildings, and Open Space and Outdoor Recreation. Similar to building
function, we add two classes, background (e.g., roads) and unknown.

Building Age. Again using PLUTO in conjunction with the NYC Planimetric Database,
we generated a per-pixel label image with each building labeled according to the year that
construction of the building was completed. Brooklyn and Queens have a lengthy history,
with the oldest building on record dating to the mid-1600s. We quantize time by decades,
with a bin for all buildings constructed before 1900. This resulted in 13 bins, to which
we added a bin for background (non-building), as well as unknown for a small number of
buildings without a documented construction year.

5.5.4 Semantic Segmentation

We report results using pixel accuracy and region intersection over union averaged over
classes (mIOU), two standard metrics for the semantic segmentation task. In both cases,
higher is better. When computing these metrics, we ignore any ground-truth pixel labeled
as unknown. In addition, for the tasks of building function and age estimation, we ignore
background pixels.

Classifying Land Use. We consider the task of identifying a parcel of land’s primary
land use. This task is considered especially challenging from an overhead only perspec-
tive, with recent work simplifying the task by considering only three classes [123]. We
report top-1 accuracy for land use classification using the Brooklyn test set in Table 5.1
and on Queens in Table 5.3. Similarly we report mIOU for Brooklyn and Queens in Ta-
ble 5.2 and Table 5.4, respectively. Our results support the notion that this task is extremely
difficult. However, our approach, unified (adaptive), is significantly better than all base-
lines, including an overhead image only approach (remote). Qualitative results for this task
are shown in Figure 5.5.
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Table 5.1: Brooklyn evaluation results (top-1 accuracy).

Age Function Land Use
random 6.82% 0.49% 8.55%
proximate 35.90% 27.14% 44.66%
grid 38.68% 33.84% 71.64%
remote 37.18% 34.64% 69.63%
unified (uniform) 44.08% 43.88% 76.14%
unified (adaptive) 43.85% 44.88% 77.40%

Table 5.2: Brooklyn evaluation results (mIOU).

Age Function Land Use
random 2.76% 0.11% 3.21%
proximate 11.77% 5.46% 18.04%
grid 16.98% 9.37% 37.76%
remote 15.11% 4.67% 31.70%
unified (uniform) 20.88% 13.66% 43.53%
unified (adaptive) 23.13% 14.59% 45.54%

Table 5.3: Queens evaluation results (top-1 accuracy).

Age Function Land Use
random 6.80% 0.49% 8.41%
proximate 25.27% 22.50% 47.40%
grid 27.47% 26.62% 67.51%
remote 26.06% 29.85% 69.27%
unified (uniform) 29.68% 33.64% 68.08%
unified (adaptive) 29.76% 34.13% 70.55%

Table 5.4: Queens evaluation results (mIOU).

Age Function Land Use
random 2.58% 0.09% 3.05%
proximate 5.08% 1.57% 15.04%
grid 7.31% 2.30% 28.02%
remote 7.78% 2.67% 28.46%
unified (uniform) 8.95% 3.71% 31.03%
unified (adaptive) 9.53% 3.73% 33.48%
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Figure 5.5: Sample results for classifying land use: (top–bottom) ground truth, proximate,
remote, and unified (adaptive).

Identifying Building Function. We consider the task of making a functional map of
buildings. To our knowledge, our work is the first to explore this. For example, in Fig-
ure 5.2, it becomes considerably easier to identify that the building in the overhead image
is a fire station when shown two nearby ground-level images. We report performance met-
rics for this task in Table 5.1 and Table 5.3 for accuracy, and Table 5.2 and Table 5.4 for
mIOU. Qualitative results are shown in Figure 5.6. Given the challenging nature of this
task, we visualize results as a top-k image, where each pixel is colored from green (best)
to red, by the rank of the correct class in the posterior distribution. Our approach produces
labelings much more consistent with the ground truth.

Estimating Building Age. Finally, we consider the task of estimating the year a building
was constructed. Intuitively, this is an extremely difficult task from an overhead image only
viewpoint, but is also non-trivial from a ground-level view. We report accuracy and mIOU
metrics for this experiment in Table 5.1 and Table 5.2 for the Brooklyn region and Ta-
ble 5.3 and in Table 5.4 for Queens. Our approach significantly outperforms the baselines.
Example qualitative results are shown in Figure 5.7.
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Figure 5.6: Sample results for identifying building function. From top to bottom, we visu-
alize top-k images for the proximate, remote, and unified (adaptive) methods, respectively.
Each pixel is color coded on a scale from green to red by the rank of the correct class in the
posterior distribution, where bright green is the best (rank one).

gr
ou

nd
tr

ut
h

un
ifi

ed

Figure 5.7: Sample results for estimating building age: (top) ground truth and (bottom)
unified (adaptive).
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5.5.5 Does Known Orientation Help?

In the evaluation above, we constructed the ground-level feature map (Section 5.4.2) us-
ing features from geo-oriented panorama cutouts. The cutout images were extracted in
the cardinal directions and their features stacked in a fixed order. To better understand the
value of the ground-level feature map, we investigated how knowing the orientation of the
ground-level images affects accuracy. We repeated the land use classification experiment
on Brooklyn using our uniform (adaptive) approach (retraining the network), but randomly
circular-shifted the set of images prior to feature extraction. Note that orientation is not
completely random, because doing so would have required regenerating cutouts. We ob-
serve a significant performance drop from 77.40% to 72.61% in top-1 accuracy, about 3%

higher than using the overhead image only method. This experiment shows that knowing
the orientation of the ground-level images is critical for achieving the best performance, but
that including the ground-level images without knowing the orientation can still be useful.

5.6 Conclusion

We proposed a novel neural network architecture for estimating geospatial functions and
evaluated it in the context of fine-grained understanding of an urban area. Our network
fuses overhead and ground-level images and gives more accurate predictions than if either
modality had been used in isolation. Specifically, our approach is better at resolving spatial
boundaries than if only ground-level images were used and is better at estimating features
that are difficult to determine from a purely overhead perspective. A key feature of our
architecture is that it is end-to-end trainable, meaning that it can learn to extract the optimal
features, for any appropriate loss function, from the raw pixels of all images, as well as
parameters used to control the fusion process. While we demonstrated its use with ground-
level images, our architecture is general and could be used with a wide variety of sparsely
distributed measurements, including geotagged tweets, video, and audio.

Copyright c© Scott Workman, 2018.
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Chapter 6

Discussion

Our thesis focused on combining ground-level and overhead image viewpoints to improve
geospatial modeling. Specifically, we showed how to leverage overhead imagery, in addi-
tion to ground-level imagery, for tasks in localization, mapping, and understanding. Our
work encompassed three primary research areas – learning a joint feature representation
between ground-level and overhead imagery, inferring labels for overhead imagery from
nearby ground-level images, and fusing ground-level imagery with overhead imagery.

In Chapter 2 we analyzed the discriminative ability of deep image representations, ex-
tracted from convolutional networks previously trained on traditional vision tasks, for sev-
eral problems in geospatial image analysis. In addition to showing that deep image repre-
sentations capture location-related information for ground-level imagery, our results show
that such representations are useful for interpreting and understanding overhead images,
despite the original networks being trained on images from a ground-level perspective.
Next, we analyzed the co-occurrence of feature activations for ground-level and overhead
images captured at the same location, finding that the representations are positively cor-
related. Motivated by these findings, we demonstrated how overhead imagery could be
leveraged to improve geospatial modeling based on ground-level imagery alone. Finally,
we highlighted potential applications in image-based search and cross-view image match-
ing. Our results suggest the potential of building deep-learning based models that are
directly targeted at problems of localization and location-related feature extraction from
ground-level and overhead imagery.

In Chapter 3 we focused on the image geolocalization task, and proposed a method
for learning a joint feature representation between ground-level and overhead images that
enables fine-grained geolocalization results at varying spatial scales. The underlying idea
was to learn a mapping between ground-level and overhead image viewpoints, such that
a ground-level query image can be directly matched against an overhead image reference
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database. We introduced a cross-view training approach that takes advantage of existing
state-of-the-art feature representations for ground-level images in order to extract features
for overhead imagery. Specifically, we used pre-existing CNNs for extracting ground-level
image features and then learned to predict these features from overhead images of the same
location. To support these efforts, we introduced a large dataset containing geotagged
ground-level images and multi-scale overhead imagery. Using this dataset, we proposed
single and multi-scale networks for extracting overhead image features, obtaining state-of-
the-art results for cross-view localization on two benchmark datasets.

In Chapter 4 we used unlabeled overhead imagery to improve image-driven mapping.
The attribute we sought to quantify was the scenicness, or natural beauty of an outdoor
scene. We began by proposing a method to estimate scenicness from a single ground-level
image that accounts for variance in the ratings and human perception of scenicness. We
demonstrated quantitatively that our approach better captures human uncertainty compared
to baseline methods. Then, we extended our approach to consider scenicness as a property
of geographic locations. To deal with the sparsity of ground-level images, we applied a
cross-view training approach to learn how to predict scenicness from unlabeled overhead
imagery. To accomplish this, we infer target labels from nearby ground-level imagery.
Specifically, we predict the scenicness of a ground-level image captured at the same loca-
tion. Finally, we proposed a hybrid approach which combines ground-level and overhead
imagery to estimate the scenicness of a query location. This approach considers the corre-
sponding overhead image and a set of the closest ground-level images with their distances
to the query location. Our results demonstrated that by including overhead imagery we are
able to construct a significantly more accurate map than purely interpolating scenicness
estimates obtained from ground-level images alone.

In Chapter 5 we proposed a general framework for fusing visual information from
ground-level and overhead imagery and demonstrated its application to fine-grained ur-
ban understanding. Our approach combines the strengths of proximate and remote sensing
in the form of an end-to-end trainable neural network, which uses kernel regression and
density estimation to convert features extracted from the ground-level images into a dense
feature map. This ground-level feature map has the same spatial coverage as the overhead
image, and is fused internally at a hidden layer of the overhead image network. A key
element of our approach is a spatially-varying kernel, conditioned on the overhead image,
that improves accuracy compared to a uniform kernel. The final output of our network
is a dense estimate of the geospatial function in the form of a pixel-level labeling of the
overhead image. To evaluate our approach, we created a large dataset of overhead and
ground-level images from a major urban area with three sets of labels: land use, building
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function, and building age. Our results showed that our approach is more accurate, for all
tasks, than if either modality had been used in isolation. A unique feature of our architec-
ture is that it can be trained end-to-end, such that it can learn to extract the optimal features,
for any appropriate loss function, from the raw images of each viewpoint, and the param-
eters used to control the fusion process. Our experiments demonstrated the application
of our framework with ground-level images, but the architecture is general and could be
used with a wide variety of sparsely distributed measurements, including geotagged tweets,
video, and audio.

As part of our research efforts we constructed several large datasets, in some cases
containing millions of images. A common feature of these datasets is that they often con-
tain pairs of ground-level and overhead images captured at the same location. For the task
of cross-view image geolocalization, we introduced several large cross-view datasets to
support training models and benchmarking performance. Similarly, we introduced a cross-
view dataset to support image-driven mapping of the subjective property of natural beauty.
Finally, we introduced a dataset to support fine-grained understanding of an urban area.
In all cases these datasets have been made available to the community, along with trained
models and example code. It is our belief that the availability of large datasets such as these
will stimulate research in localization, mapping, and understanding.

This thesis proposed several methods for jointly understanding ground-level and over-
head imagery. Now widely available, overhead imagery offers a potential alternative to
augment methods which rely solely on sparsely available ground-level images. Our work
culminated in a general framework for estimating geospatial functions that integrates visual
evidence from multiple viewpoints. There are several possible future research directions
for extending this work, including: applying our framework to other tasks and sources
of sparse measurements, integrating multi-scale overhead imagery, incorporating ground-
level image attention, and exploring other architectures. Overall, we hope that our work
will inspire the vision community to leverage overhead imagery as an additional source of
context when searching for solutions to problems in geospatial modeling.
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[4] Georges Baatz, Olivier Saurer, Kevin Köser, and Marc Pollefeys. Large scale visual
geo-localization of images in mountainous terrain. In European Conference on Com-

puter Vision, 2012. 24, 29, 30

[5] Ruzena Bajcsy and Mohamad Tavakoli. Computer recognition of roads from satellite
pictures. IEEE Transactions on Systems, Man and Cybernetics, 6(9):623–637, 1976. 4

[6] Aayush Bansal, Xinlei Chen, Bryan Russell, Abhinav Gupta Ramanan, et al. Pixel-
net: Representation of the pixels, by the pixels, and for the pixels. arXiv preprint

arXiv:1702.06506, 2017. 67

[7] Mayank Bansal, Harpreet S Sawhney, Hui Cheng, and Kostas Daniilidis. Geo-
localization of street views with aerial image databases. In ACM International Confer-

ence on Multimedia, 2011. 30

[8] Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele. Ten years of
pedestrian detection, what have we learned? In European Conference on Computer

Vision, 2014. 3

78



www.manaraa.com

[9] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: a cpu and gpu math expression compiler. In Proceedings of the Python for

scientific computing conference, volume 4, page 3, 2010. 13

[10] Margaret Ann Boden. Mind as machine: A history of cognitive science. Clarendon
Press, 2006. 1

[11] Arjun Chandrasekaran, Ashwin K Vijayakumar, Stanislaw Antol, Mohit Bansal,
Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. We are humor beings: Under-
standing and predicting visual humor. In IEEE Conference on Computer Vision and

Pattern Recognition, 2016. 42

[12] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of
the devil in the details: Delving deep into convolutional nets. In British Machine Vision

Conference, 2014. 35

[13] David M Chen, Georges Baatz, K Koser, Sam S Tsai, Ramakrishna Vedantham, Timo
Pylvanainen, Kimmo Roimela, Xin Chen, Jeff Bach, Marc Pollefeys, et al. City-scale
landmark identification on mobile devices. In IEEE Conference on Computer Vision

and Pattern Recognition, 2011. 24, 30

[14] Fabio Cozman and Eric Krotkov. Robot localization using a computer vision sextant.
In International Conference on Robotics and Automation, 1995. 29

[15] David J Crandall, Lars Backstrom, Daniel Huttenlocher, and Jon Kleinberg. Mapping
the world’s photos. In International World Wide Web Conference, 2009. 3, 24, 28, 30

[16] Hal Daume III and Daniel Marcu. Domain adaptation for statistical classifiers. Jour-

nal of Artificial Intelligence Research, pages 101–126, 2006. 31

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In IEEE Conference on Computer Vision and

Pattern Recognition, 2009. 13

[18] Arturo Deza and Devi Parikh. Understanding image virality. In IEEE Conference on

Computer Vision and Pattern Recognition, 2015. 42, 43

[19] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A. Efros. What
makes paris look like paris? ACM Transactions on Graphics (SIGGRAPH), 31(4),
2012. 9, 29, 30

79



www.manaraa.com

[20] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep con-
volutional network for image super-resolution. In European Conference on Computer

Vision, 2014. 9

[21] Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, and César A Hidalgo.
Deep learning the city: Quantifying urban perception at a global scale. In European

Conference on Computer Vision, 2016. 60

[22] Anne Eisenberg. Microsatellites: what big eyes they have. The New York Times,
2013. 4

[23] Quan Fang, Jitao Sang, and Changsheng Xu. Discovering geo-informative attributes
for location recognition and exploration. ACM Transactions on Multimedia Comput-

ing, Communications, and Applications, 11(1s):19, 2014. 9, 30

[24] Roman Fedorov, Piero Fraternali, Chiara Pasini, and Marco Tagliasacchi.
Snowwatch: Snow monitoring through acquisition and analysis of user-generated con-
tent. In IEEE International Conference on Multimedia and Expo, 2015. 63

[25] Roman Fedorov, Piero Fraternali, and Marco Tagliasacchi. Snow phenomena model-
ing through online public media. In IEEE International Conference on Image Process-

ing, 2014. 63

[26] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor matching with
convolutional neural networks: a comparison to sift. arXiv preprint arXiv:1405.5769,
2014. 10

[27] Jacob Gardner, Matt Kusner, Kilian Q. Weinberger, John Cunningham, and Zhixiang
Xu. Bayesian optimization with inequality constraints. In International Conference on

Machine Learning, 2014. 52

[28] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In IEEE Conference on Computer Vision and Pattern

Recognition, 2016. 3
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